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Elastic deformation of a fluid membrane upon colloid binding
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When a colloidal particle adheres to a fluid membrane, it induces elastic deformations in the membrane
which oppose its own binding. The structural and energetic aspects of this balance are investigated within the
framework of a Helfrich Hamiltonian. Based on the full nonlinear shape equations for the membrane profile, a
line of continuous binding transitions and a second line of discontinuous envelopment transitions are found,
which meet at an unusual triple point. The regime of low tension is studied analytically using a small gradient
expansion, while in the limit of large tension scaling arguments are derived which quantify the asymptotic
behavior of phase boundary, degree of wrapping, and energy barrier. The maturation of animal viruses by
budding is discussed as a biological example of such colloid-membrane interaction events.
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[. INTRODUCTION lar targeting signals, the slight net positive charge of the
complex is believed to trigger adhesion and membrane pen-
Arguably the most important structural component ofetration via an electrostatic interaction with negatively
all living cells is the phospholipid bilayer. It combines the charged regions of the plasma membrane.
two diametrical tasks ofartitioning—thereby organizing Finally, a great deal of biophysical experimental tech-
the complex hierarchy of intracellular biochemical niques involve the attachment of microbeads to membranes.
environments—while at the same time providing controlledFor instance, one way to measure cellular tensions involves
transport mechanisms between neighboring compartmentgulling a thin tether with an optical tweezer which grabs a
[1]. The size of particles being transported spans several obead adhering to the membraf@]. Cell membranes and
ders of magnitude, ranging all the way from subnanometesubcellular organelles are routinely probed with an atomic
ions, whose passage through the bilayer is facilitated by proforce microscop¢9]. And a classical experiment on surface
tein channels, up to micron-sized objects engulfed by thelynamics and locomotion of cells involves monitoring the
large-scale membrane deformations occurring during phagaentripetal motion of a surface adherent part{de]. In all
cytosis. cases the object adhering to the cell will locally deform its
Since cell survival depends on a meticulous balance oplasma membrane, which can be crucial for interpreting the
these processes, they are actively controlled and requirexperimental results. For example, in the case of centripetal
metabolic energy to proceed. Still, there are cases where théyead motion the adhering particles have been observed to
happenpassivelyas a result of generic physical interactions, actually becomengulfedby the cell without involvement of
for instance, a sufficiently strong adhesion between the pathe endocytosis machinery, if only the membrane tension is
ticle about to be transported and the membrane. An examplew enough[11].
that has been studied in extensive detail is the route along Wrapping and budding processes occur very frequently in
which many animal viruseteave their host cell[2]. After  cells, but even though they are extensively studied experi-
entering the celltypically via receptor mediated endocytosis mentally, the high complexity of the real biological situation
or other active processg8]) and completion of the viral renders a clear extraction of underlying physical principles
replication steps, the new virions have to get out againvery difficult; it is not even obvious or undisputed whether
Many virus families accomplish this by the plasma mem-an explanation in terms of such principles is possible. A bet-
brane wrapping their nucleoprotein capsid and pinching ofter look at the physics is therefore provided by more easily
(“budding”)—a step which not only sets them free but by controllable experiments on the adsorption of colloids onto
which they also acquire their final coating. A particularly model lipid bilayers. The degree of wrapping of a colloid by
clean model case is provided by Semliki Forest virus, ina giant phospholipid vesicle has, for instance, been studied
which case the binding between capsid and membrane isy Dietrich et al. [12], who showed that it can be quantita-
promoted by viral(“spike” ) proteins[4—6]. tively understood in terms of a balance between adhesion
A different realization of such a wrapping event is pre-and elastic energy. Colloids will change the shape of the
sumably exploited by an efficient gene transfection systenvesicle they adhere to, and this may give rise to attractive
proposed a few years ago by Boussifal. [7]. There, DNA interactions between thefd3]. If the membrane tension is
is complexed by the cationic branched polymer polyethyleniow enough or the colloid sufficiently small, bending of the
imine into a globular complex, which then enters the (@  membrane will become an important contribution which can
deduced from reporter gene expresgidtather than particu- be strong enough to completely suppress adhdgidn-16.
The bending stiffness will also prevent any “kink” in the
membrane profile at the line of contact; therefore, the notion
*Present address: Max-Planck-Institutr fiPolymerforschung, of a contact angle only remains meaningful in an asymptotic
Ackermannweg 10, 55128 Mainz, Germany. sense and needs to be replaced by the concept of contact
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curvature[17-20. For vesicles adhering on flat surfaces this
can be measured by visualizing the contact zone via reflec
tion interference contrast microscop®1], but for adhesion
of membranes on strongly curved substrates—in particular
small colloids—or if one needs resolution much below opti-
cal length scales, this option is not available. Here, computel
simulations can provide means for a closeup s}, but
to date it is still difficult to perform a quantitative analysis
relating the observedeometryto the underlying mesoscopic
elasticproperties.

Instead of directly measuring the local deformations, one
can study their indirect consequences and from there attemg
to deduce some of their properties. This of course requires

theoretical modeling for bridging the gap. For instance, lat- FIG. 1. lllustration of the wrapping geometry and membrane

ere_ll membrane tepsmns can be inferred from the force re|c'>r:1rametrizr:1tion. An asymptotically flat membrane adheres partially
quired -to pull a thin tqthgr from the membraf&. Recent to a spherical colloid of radiua with a degree of wrapping given
theoretical work by Dengyi et al. shows that the force as a , ,—1—cosa. Cylindrical symmetry around the;, axis is as-
function of tether length is quite subtle and shows an initialgymeq throughout the paper. The possibility of “overhangs” re-
oscillatory structure before exponentially approaching theyuires going beyond a Monge-like parametrizatigrhich would
asymptotic valu¢23]. Very useful information might be ob- give the heighth as a function of radial distanc®. The choice
tained from this, for example, an independent estimate of théllowed in this work is to specify the angl¢ with respect to the
tetherwidth. For less strongly bound beads Boulbitch hashorizontal as a function of arclenge{28].

related the unbinding force to the adhesion energy, mem-

brane bending stiffness, and the elasticity of an underlying Il. GENERAL ENERGY CONSIDERATIONS

elastic network(such as the cytoskeletpby describing the . . . . .
associated membrane deforr)rllation with?/n a smallggradient The a|m_of this paper is to describe fche local defor.mauons
approximation{24]. And for the case of colloids adhering to Of. a flat fluid membrane.uppn ads_orpt|on of a s_phenqal C.Ol'
quasispherical vesicles a simple ansatz for the membraAg'd' the geometry of which is depicted schematically in Fig.

shape has been shown to yield a structural phase Oliagra{I)naltwnl be assumed that this process can be understood as a

indicating when the colloid is free, partially wrapped, andh Ia_\nce_ ofdthe foILowing tthrete energy contr_itbutioﬁiAd;j
fully enveloped[16]. esion is driven by aontact energyper unit areaw an

This paper extends the work of R&25] in developing a opposed by(ii) the requirement tdendthe membrane as

detailed theory of the local wrapping behavior in the case ofNe” as(iit) the work of pulling excess membrane toward the

a constant prescribed lateral membrane tension. This “enl/f@PPing site against a prescrib&deral tensiono. Since

semble” is particularly relevant for the biological situation, the Qescrlptlon V.V'!I hot aim at a microscopic und.ers.tandmg,
since almost all cells constantly adjust the amount of Iipidsc.ontlnuum elast|9|ty theory17] is taken as a_baS|s, In par-
in their plasma membrane in order to maintain its Iateralt'cylar’ the bending energy per un|t' area will be described
tension at some specific set poif@6], but it would also  USing the standard Helfrich expressic®)]

apply to a bilayer spread across a hole, provided it is in
contact with a lipid reservoir. Tension can even arise from
small-scale membrane undulations hiding some membraneh q the local principal i f th
area on the larger length scales one might currently be intefyN€re€ ¢, andc, are tne focal principal curvatures of the
ested in(say, the colloid size[27]. The situation to be dis- two-dimensional membrane surfai9], ¢, is t_he spontan'e-
cussed here is similar to the one treated by BoulbjH, ous curvature of the membrane, ardand « are elastic
but it will neither be restricted to small membrane deforma-meduli (with units of energy. In the following a symmetric
tions nor to a two-dimensional modeling of the geometrymembrane is assumed, i.€,=0 (consistent with the as-
(which would be appropriate for long cylindrical collojds Sumption of asymptotic flatnessand since no topological
After setting up the problem and identifying the relevantchanges will be considered, the second term in(Excan be
energies in Sec. I, the full nonlinear shape equations of thélropped31]. The tension work is per definition given by the
membrane profile are studied in Sec. Ill, leading to the struclateral tensiono times the excess area pulled toward the
tural wrapping phase diagram. Section IV then treats th&vrapping site[32]. Note that from tension and bending
small gradient expansiofi.e., thelinearizedtheory), identi- ~ modulus one can construct a lengih—specific to the
fies its range of validity as the regime of low membranemembrane—according to

tension, and derives various asymptotically exact results. For

the opposite regime of large tension several scaling predic- e \/E @)
tions are deduced in Sec. V and validated against the numeri- o

cal results from Sec. lll. In Sec. VI the results obtained

throughout the paper are discussed in the framework of th¥lembrane deformations on a length scale smaller than
biological example of virus budding. predominantly cost bending energy, while deformations on a

) _
Epend= 3 K(C1+ Co— Co)?+ KC1Cy, 1)
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larger scale pay mostly in tension. An interesting situationsmoothly touches the colloid with a degree of wrapping
occurs when the two intrinsic lengths of the problem—theequal toz. The important point is that such catenoids are
colloid radiusa and the membrane lengii+—are of the same minimal surfacesvhich have zero mean curvature at every
order, because then bending and tension contributions amoint [30], and hence no bending energy. Siridefor o=0
comparable. In fact, for a typical cellular membrane tensiorthe only possible energy of the free membrane comes from
of 6=0.02 dyn/cm[26] and a typical bilayer bending modu- bending andii) the bending energy is positive definite, the
lus of k=20kgT (WherekgT is the thermal energyone ob- catenoid is in fact the minimum energy shape. The above
tains A=64 nm [33]. Viral capsids are about this big], simplified description of the problem is thus exact in the case
therefore this biological situation sits squarely in the crosso=0, i.e., forWw<4 the colloid is not wrapped and fdw
over regime. >4 it is completely wrapped, with no energy barrier imped-
Assuming that the adhering membrane remains in théng the transitiorf 34].
fluid state, its energy can be calculated easily once the degree
of wrapping,z=1—cosaq, is specified, because the shape of ||| THE FULL SOLUTION OF THE SHAPE PROFILE
the membrane is know(see Fig. 1 for the definition of all
geometric variables The area of the colloid covered by  BY settingEqe.=0 one neglects, in particular, any poten-
membrane is given b&ad: 2’7Ta22, which gives an adhesion tial effect tha.t the Strongly curved pal’t of the membrane
energy of E,y= — WA~ —27a?zw. Using Eqg. (1), the plose to the line of contact may have on t_he wrapping t_)ehav—
bending energy is found to b&pen 2 k(1/a+ 1/a)?Ag ior. As a next step it is therefore tempting to approximate
=4mzk. Finally, the work done against a lateral tensiois ~ Ejee by @ phenomenological line enerf§4]. However, nei-
proportional througho to the excessarea pulled toward the ther the relation between the line tension constant and the
wrapping site, which isAA,4= ma®z?, giving the tension membrane propertieg and o would be known nor is the
energyE = ma’z’o. implied dependency on the degree of wrapping—namely
It turns out to be advantageous to measure energies it Sina=z(2—z)—supported by more careful studi¢®n
units of the bending constart and lengths in units of the a scaling level and in the high tension limit this question is
colloid radiusa. This suggests the definition of the following revisited in Sec. V.
three dimensionless variables: In order to draw sound conclusions, an explicit treatment
of the membrane deformation is needed. Three approaches
are discussed in the following: In the present section the
equilibrium membrane shape is determined by minimizing
its energy. Since this leads to complicated nonlinear differ-
where numerical factors af and 2 have been introduced for ential equations, one largely has to rely on numerical solu-
later convenience. Note that the crossover relatiera cor-  tions here. In the second approach, discussed in Sec. IV, a
responds tdr=1. In terms of these reduced variables therestriction to small membrane deformations renders these
total energy of the colloid-membrane complex is given by differential equationdinear, and they can be solved exactly
5 5 then. However, the latter approach per construction is limited
E=—(W—4)2+T52%+Eed 2,7), (4)  to fairly small degrees of wrapping. Hence, its range of va-
lidity is not obvious and has to be checked against the non-
where Eqee=Eqee/ 7k is the (dimensionlessenergy of the linear results. Finally, in Sec. V a scaling analysis is used to
free part of the membrane. This term is not so easy to calcushed light onto the high tension regime.
late, since the membrane shape is not kn@apriori. Even
though the main purpose of this paper is to deterntipg, A. Energy functional and shape equations
and understand its implications on the wrapping process, it
still proves instructive to have a brief look at the problem

while ignoring Egee. Minimizing Eq. (4) with respect toz . . A .
(and not forgetting possible boundary minimazat0 or z functional of the shape. U§|ng the cylanrlcaIIy symmetric
angle—arclength parametrization from Fig. 1, the two prin-

=2), the following picture emerges: Colloids do not adhere”, .
if W<4, since they cannot pay the bending price. Ofice cipal curvatures are found to be (sjir and ¢, where the

>4, they start to adhere by first being partially wrapped. Fyjdot indicates. a derivative with respect to the arclergyffhe
envelopment occurs only >4+ 4. In between, the de- ©€nergy functional can then be written [&5-37
gree of partial wrapping ig=(W—4)/25, and both transi- B - _ .
tions from free to partially wrapped as well as from partially Efree= f ds L(¢, i1, 1,hN Ay, (5)
wrapped to fully enveloped are continuous. 0

There is one case in which the simplificatid..=0 o ,
in fact holds rigorously, and that is the case of zero tensioff’here the Lagrange functidnis defined by

E 2wa? a

K K K

: )

The energy of the free membrane is the surface integral
over the local bending and tension contributions and is thus a

0=0[14,15. This can be seen as follows: Consider the two- ] > e
parameter family of cylindrically symmetric surfaces L=r! |+ siny n 2_‘7(1_00&#)
r(h)/a=a, costi(h/a—ay)/a;], which are calledcatenoids r a2

The particular choicea;=z(2—z) and a,=z—1+3z(2 )
—2)In[Z/(2—2)] is readily seen to describe a surface which + N\ (F—cosy)+N,(h—siny). (6)
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The expression in curly brackets contains the bending and pp=0. (9f)
tension contributions, while the two additional terms enforce

the nonholonomic parametrization constraintscosyr and ~ Shape equations of this kind have been studied extensively in
h=siny by means of the Lagrange paramefenctions (h€ past, leading, among many other things, to a very de-
\,(s) and\(s). Measuring all lengths in units & it can tailed understanding of vesicle conformatigmswhich case

be verified thatE,,, depends parametrically of (and one also needs to fix surface and volume by additional
free " ) L Itipliers F detailed revi thi bject
through the boundary conditions @ but on nothing else agrange multipliers For a detailed review on this subjec

Therefore ando remain the relevant axes for a structural see Ref{37].

phase diagram, and no new independent variable is intro-

duced by the free part of the membrane. For the same reason

the membrane shape scales with the colloid siaé given The situation to be studied is a colloid wrapped by an

andz initially flat membrane. The boundary conditions thus have
The Lagrangiart. is independent of the arclengshthere-  t0 ensure that the membrane touches the colloid smoothly

fore the corresponding Hamiltonian is conserved. Moreoverand becomes asymptotically flat at large radial distances. At

numerically one usually integrates systems of first-order difcontact,s=0, the following must evidently holgsee again

ferential equations. Both observations suggest to switch to Eig. 1:

Hamiltonian description. After defining the conjugate mo-

B. Boundary conditions

menta r(0)=asina, (10a
L  sing h(0)=—acosa, (10b)
pwza_l-//:zr( gt T) (V- "
L #(0)=a. (109
pr:E:)\r , (70 The notion of asymptotic flatness can be enforced by requir-
ing the angley(s) and all of its derivatives to vanish in the
and limit s— [38]. However, it suffices to demand this for the
angley and the meridinal curvaturg,
aL .
ph:_.:)\h, (7C) lim 1/’(3):0 (116)
dh s
a Legendre transform yields and
H=yp,+ip,+hp,—L lmw(s):o, (b
pi pysing 2o which ensures that tension and curvature energy density van-

ar ; ?(1—COS¢)+pr cosy+ py sini.

ish if one moves away from the site where the membrane
shape is perturbed by the adhering colloidy(fs) vanishes
(8 sufficiently rapidly (as it does fora>0, see Sec. Iy all
i , L contributions beyond some large distai®m arclength will
The shape equations, which express the minimization of thge egjigible. A convenient way to exploit this is the follow-
functional (5), are the associated Hamilton equations: ing: Choose an upper arcleng&rand impose the zero angle
condition there. Hence, variations & and #(S) are not

Py ﬂ (93 permitted during functional minimization, bu¢S) andh(S)
2r r are still free. This implies the additional boundary conditions
(36,39
I =cosy, (9b)
h=siny, (90) 0=—"| =p(S (129
s=S
. Py 251 _ and
Py={7F ~Pn cosy+| —-+p;|siny, (9d)
a aL
0= P Pn(S). (12
. Py[py sing| 2 s=S
="\~ 7 | Tz (1—cosy), (9¢) : : :
a The Hamilton equatior{9f) showsp;, to be an integral of
“motion,” and the boundary conditioril2b) fixes its value
and to zero. Hencep,, drops out of the problem everywhere. The
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condition onp, can be made very useful by a little more 1.0
thought. Since foir>0 the angle) converges to zero in an
essentially exponential wagee Sec. IV, the expression for

the Hamiltonian will converge towarg, . Thus, the require- 0.8
ment of a flat profile impliesH=H(S)—p,(S)=0, or in
other words, if the membrane is to become flat, the Hamil- . free
tonian must be zero. Using Eq&/a and (8), this can be 0.6 |
turned into a condition fop, at thecontactboundary: .

Vz(2—2

ap(0)= 1_2){1+2“&z—[ai/;(0)]2}. (13) 04 “Sz

I

1

1

1

1

1

1

I partially

V|V wrapped

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

The only remaining variable for which the contact value :

is not yet known igp,,, or alternativelys. At this point a bit

of care is required. As is known, the balance between adhe-
sion energy and elastic membrane deformation results in a g Y .
boundary condition on the contact curvat{it&|. For spheri- 0.0 3 4 5 6

cal surfaces this becomgsg| o

7 fully
: enveloped

. . ~ FIG. 2. Structural wrapping phase diagram in the plane of re-

ago=ay(0)=1- M (14 duced adhesion constaTut;npd r%dpuced Iatergz]al tensi@n inFt)he low
tension regimer<1 close to the triple point “T” v=4,6=0).

However, it is crucial to understand that this condition onlyThe dashed line “W” marks the continuous transition at which

holds for the finalequilibrium shape of the complex. In the partial wrapping sets in, the bold solid line “E” indicates the dis-

present case the situation is different, because the aim is #ntinuous transition between partially wrapped and fully envel-

calculate the energy.ee at anygivenvalue of the penetra- oped, and the short dashed lines;*&nd “S,” are the spinodals

tion z. Therefore the adhesion balancecisnstrained and  belonging to “E.” The fine dotted liné=4+25 close to E indi-

Eq. (14) generally will not hold. Nevertheless, by later im- cates where the fully wrapped state has zero energy.

posing JE/9z=0 for identifying the equilibrium degree of

penetration, Eq(14) is recovered. This is clarified in the of this bifurcation may permit some insight into the general

Appendix. nature of the solution, which, however, will not be pursued in

Rather than Eq(14), it is the condition ofasymptotic  the present paper.
flatnessthat will determiney,. In practice, this can be done

via a shooting method: For a trial value ¢f integrate the
profile and find the arclengts, at which the angle first van-

ishes, i.e..i/(so)=0. Now adjusty, iteratively and search
for the valués) at whichs, diverges. One thereby finds the

contact curvature as a function of penetratigg(z), in what

amounts to a nonlinear eigenvalue problem. ndz The minimum inz within the rang€g0;2] corresponds

At this point a side note seems appropriate. It turns ou T ; :
~ '~ o o the equilibrium state and one obtains the phase diagram as
that ato=07.=4.72113 ... thenature of this eigenvalue depicteg in Fig. 225] P g

problem changes qualitatively, since a regionzoValues

emerges(at zq= 1'8625.9 o '.) for Wh'Ch thgre_emstthree line “W” ) remains unchanged compared to the case where
contact curvatures which yleld profiles satisfying all bound'Efreewas neglected, because—ijust like the tension term—the
ary conditiongthe functiony,(z) develops an S shapehe  energy of the free membrane is of higher than linear order
correct solution has to be identified based on the criterion Ofor smallz (th|s again follows ana'ytica”y from a small gra-
lowest energy. For somewhat larger valuesoothe lowest  dient expansion, see Sec.)I\The physics is thus determined
energy solution cannot even be realized physically: The corpy a balance between bending and adhesion alone. However,
responding curvatureés, may become larger thandl/which  the transition from partial wrapping to full envelopmétite

is geometrically impossible because the membrane cannablid line “E” ) changes significantly: As can be seen in Fig.
bendinto the colloid it adheres to. This, however, is not a 3, an energy barrier separates the fully and partially wrapped
problem in the present case of an adhesion balance, since thates, rendering the transitiafiscontinuous This energy
curvature boundary condition from E(.4) anyway requires barrier turns out to be mostly tensignot bending energy

the equilibrium contact curvature to kmmaller than 1A. stored in the free membrane of partially wrapped colloids,
Therefore, the accessible range of multivalued contact curvaand its height can be quite substantial. For instance, with
tures always turns out to lie in between the transition fromo=0.02 dyn/cm(a typical value for a cellular tensidr26]),
partially to fully wrapped, and it has no direct consequences=30 nm (capsid radius of Semliki Forest virus, as an ex-
on the phase diagrafd0]. Still, the mathematical properties ample for a colloidal particle to be wrappedind «

C. Structural phase diagram

Numerically performing the calculations indicated above
yields the shape profile and hence, via Bj, the free mem-
brane energy for any given value &fandz From Eq.(4)
one then determines the total energy as a functiodr,div,

The transition from free to partially wrappdgee dashed
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_ FIG. 4. Hysteresis loop of crossing the envelopment transition
FIG. 3. Height of the energy barriefp, e~ Eparie/ Tk @S @ by changing the adhesion energy for the particular tensiofi
function of reduced tension in the low tension regitne 1, atthe =1, At W=4 binding sets in, afv~6.1 the fully enveloped state
value of where the transition from partial wrapping to full envel- pecomes stable. However, only @t~7.5 does the huge energy
opment occurs. The inset illustrates the shape of the fun&t{a barrier of 6&gT separating it from the partially wrapped state van-
and defines the concomitant energy barriér=0.5 in this ex- ish. On the unbinding branch the system again remains metastable
ample. beyond the actual transition, the stable partially wrapped branch of
low bindings is entirely skipped and “replaced” by a metastable

_ e e partially wrapped branch below=4, featuring large values of
2KgT, one findsg~0.22 and from thaEyanier~ 22Kg T At W~2.7 the energy barrier for unbinding vanishes. The unstable

Th's barrier is too large to be overcome by thermal ﬂucwa'branch is indicated by the fine dashed back-bending curve and cor-
tions along41]. However, upon increasing the adhesion en- ) =
ergy W and thereby going deeper into the region of full en_responds to the maximum B(z).
velopment, the energy barrier separating the partially and the
fully wrapped state decreases, ultimately vanishing at th@pproaching a catenoi#4]. This fact is very convenient
spinodal line “S” [42]. Conversely, once the colloid is fully because knowledge of the exact energy of the enveloped
wrapped, the same energy barrier prevents the unwrappirgjate greatly simplifies the discussion of the structural tran-
transition, and one has to decrease the valu& @irther in sitions. This will be further exploited in Sec. IV. As an im-
order to remove this barrier—see the second spinodal “S Mmediate consequence, it becomes possible to estimate the
in Fig. 2. Cycling across the envelopment transition E thugpoint of envelopment by comparing the known energy of the
gives rise to hysteresis, as is illustrated for the particular castilly enveloped state not with the partially wrapped state but
=1 in Fig. 4, for which the energy barrier iEp,er  SIMPly with the free state, namelfg=0. This gives the
~66kgT using the same system properties as above. IntefoundaryW=4+25, which is also plotted in Fig. 2 and
estingly, this pronounced hysteresis entirely skips the par-
tially wrapped region upon unbinding. 5
Both W and are proportional t@?; therefore, a scan of [
the particle radius at fixed values ok, o, andw yields lines [
in the phase diagram which pass through the origin. A careful L
study of the envelopment boundary E then reveals that for
w/o=<1.37 particles will not become fully enveloped, irre- 3

spective of their size, while fon/o=2 all sufficiently large

particles are enveloped. In the small region in between,
1.37=w/o=<2, particles are only enveloped if they are nei-
ther too small nor too large. The asymptotic envelopment

A
condition for smalla coincides with the boundary at which e partially wrapped
wrapping sets in, which ii=\2«/w or w/o=2(\/a)? [ fres “\ i
[14,15. At the onset of the possibility of full envelopment, o L—1 bl S 1
w/o=1.37, the first particles to be enveloped have a radius 10° 410 afl 10? 108

a=4.4\. Figure 5 summarizes these results.

The energy of the free membrartg,e., vanishes not only FIG. 5. Influence of the particle radiwson the wrapping be-
in the limit z—0 but also in the full-wrapping limiz—2.  havior. Sufficiently large particles will always at least partially
This is reminiscent of the case of an ideal neck connectingvrap. In the range 1.3%7w/o<2 particles only become enveloped
two vesicleg43] and relies on the membrane shape locallyif they are neither too small nor too large.

031903-6



ELASTIC DEFORMATION OF A FLUID MEMBRANE . . . PHYSICAL REVIEW E 69, 031903 (2004

T T T T T ] zero tension asymptotic; getting as close as that to the high
-------------------------------------- tension asymptotics requir@s=2x 10°. Over the interven-
ing five orders of magnitude of reduced tension, the influ-
ence of bending and tension cannot be easily disentangled. In
Sec. Vit will be shown that the Young-Duplienit is reached
in a power law fashion with a small exponent 1/3, which
partly explains this slow crossover.

It may be worth pointing out that the large range of values
of & is not experimentally unreasonable, because each of the
three variables entering the reduced tension can vary by a
few orders of magnitude: Membrane tensions between 0.01

dyn/cm and 1 dyn/cm are typicf26|, as are bending con-
2 [ 2 stants betweenKgT and 10&gT [47]. Assuming colloidal
[ 1 1 1 1 1 ] radii between 20 nm and 2m vyields a range foio from
10~ 1072 10° 102 10* 10° 102 about 102 up to 16.

FIG. 6. Phase boundary between partially and fully wrapped IV. SMALL GRADIENT EXPANSION
state plotted against decades of reduced terisiorhe combination

(W—4)/o is seen to crossover from the value 2 at srizgliwhich i bl s the followina: F fficientl I
follows from the small gradient expansion, to the Young-Dupre noniinear probiem 1S the Toflowing: For sufliciently sma

limit 4, which results when the ener@ec of the free membrane is  (€NSIoN the equilibrium penetration shortly before envelop-

negligible. The two dotted curves at small and lafgeorrespond ~ MeNt €nsues is quite smadlee the inset in Fig.)3as is the

to the small gradient estimat@7) and the scaling predictio(85), co'ncom'ltant perturbation Qf the flat membrane. Therefore,

respectively. this region of the phase diagram should be amenable to an
approximate treatment of the differential equations which

which actually becomes asymptotic to the real phase bound;_orresponds to a lowest order expansion around the flat pro-
ary in the limitg— 0 (in a complicated logarithmic fashipn ™€

Note that this line differs from the phase boundary of the

case wher&.. had been neglected by a factor 2 in the slope A. Functional and linear shape equations

(i.e., the prefactor o) —and in a maybe unexpected way: | the shape of the membrane is only weakly perturbed, a
The region in the phase diagram belonglng to fully enveI-MOnge representation giving the profile heighas a func-
oped states grows at the expense of partially wrapped statggn of the positionr = (x,y) in the reference plane is appli-

Even though bending and tension energy wagkinstadhe-  caple. Bending plus tension energy can then be written as
sion, they can actuallpromote envelopment, because par-

One particular result from the numerical solution of the

tially wrapped states with a large penetration t@mer their P Vh 2
energy by completing the wrapping, which provides another E=f d?r 1+ (Vh)? > V:—————| +oy,
means to understand why the transition is discontin(id&k V1+(Vh)?

The same has been found for colloids adhering to quasi- (19

sphenc_al vespleé}fi]. . . whereV is the two-dimensional nabla operator in the refer-
For increasingo the bending energy should ultimately

become negligible compared to the tension. Indeed, in thence plane. Expanding the two terms in the integrand up to

- . "fowest order inVh gives the small gradient expansion of th
limit k—0 the termE;, vanishes, because the membrane gV eS order invh gives the small gradient expansion of the

flat immediately after detachingmoothness of the slope is energy functional

no longer required The equilibrium penetration of partially p o

wrapped colloids, as deduced from E@), is then z Ezf dzr[—(Vzh)er —(Vh)Z]. (16)
=W/2¢. This equation can be rewritten as= o[ 1+ cos(r 2 2

—a)] and s thereby recognized as tMgung-Dupreequation o 0 ctional variationsSE=0 finally yields the linear
[46], which relates adhesion and tension to the contact angles‘nape equatiofds]:
here m—a. The envelopment boundary E consequently oc- '
curs at wW=40o, i.e., where the penetration is8=2, or, V2(V2—\"2)h=0 (17)
equivalently, where the contact angle vanishes and the mem- '
brane completely “wets” the colloid. where\ is the length introduced in Eq2).

On the basis of these results one expects a crossover from
the small gradient asymptotic phase bound@ry 4+ 27,
valid belowa=1, to a large tension limiv=45=4+45.
Figure 6 confirms this. However, it is quite remarkable how The differential equatioril?) is solved by eigenfunctions
many orders of magnitude of variation of the reduced tensiowf the Laplacian corresponding to the eigenvalues 0 and
it takes to establish the transition toward the high tensiom ~2. In the present cylindrical symmetry the general solu-
asymptotic: Ate=1 the curve is about 0.142 away from the tion can therefore be written as

B. Equilibrium profile and energy
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wherey=0.5772 . . . is theEuler-Mascheroni constaf49].
Up to a(importan} logarithmic correction this has the form
of atensionenergy. In combination with Eq4) one obtains
the small gradient energy, up to quadratic order in the pen-
etrationz, and one can discuss the phase behavior.

As already mentioned in Sec. Il C, the energy of the free
membrane is of higher than linear order for smalhence
the transition from free to partially wrapped is dictated by
FIG. 7. Exact membrane profilésolid curves and small gra-  the palance between bending and adhesion alone, giving the

dient approximation(dashed curvesfor two fixed detachment phase boundar§i=4. The equilibrium penetration follows
anglesa=30° anda=60°. The reduced tension &=0.1. ~ . .
from 9E/9z=0, which can be rewritten as

h(r)=hy+h,In(r/N) +hsKo(r/N)+hglg(r/N), (18 W—4 5z
we =—Te27 with W:=2y+ln7. (22)

whereK, andl, are modified Bessel functiorig9]. Since

lo(r) diverges ag —c, the condition of a flat profile re-  The solution of this transcendental equation is known as the
quiresh,=0. And the coefficient, has to vanish, because | ambert)V function[50], and in the present situation it is the

otherwise the energy density is not integrablerfer (and  pranch— 1 which is needed. One thus obtains
o>0). The two remaining coefficients are obtained by fix-

ing height and slope of the profile at the point where it 2027 2e~27 W—4
touches the colloid. A straightforward calculation then gives z=—eV=——weV=———, (23
the small gradient profile g oW doW
h) A K Kotk )—Ko(rh) with
a itz Kkany 0 1 W
W=W(W)=W_,| — 5 e?7]. (24)

where the abbreviatioR=sina=/z(2—2z) has been used.

Figure 7 illustrates how the small gradient prediction of theEquation(23) thus gives the penetration as a functioniof

profile compares to the full solution. If the detachment angleanda. Forx— 0~ the functionV_4(x) diverges to—x in a

« is sufficiently small, the overall membrane deformationlogarithmic way [51], therefore the penetration(W) in-

remains also small, and the profile from the linearized theorycreases a@lv=4 for all values of the tension linearly up to a

follows the full solution quite accurately. However, for a logarithmic correction. Note also the very simple depen-

somewhat larger significant deviations appear: the mem- dence on tension, namely, just inversely proportional.

brane deformation is predicted to be substantially larger than The expressiori23) is of course not valid for aliv>4,

it actually is. It is worth pointing out that a good understand-because the system must also cross the transition toward the

ing of the profile is important if one attempts to infer physi- enveloped state. At this point one has to make use of a piece

cal properties of the membrane or the complex by measuringf information known from the nonlinear studies. The energy

the membrane deformation and working backwards. Usingf the free membrane was found to vanistzapproaches 2,

the linearized prediction of the profile then would lead tosuch that only the bound part contributes to the complex

incorrect conclusions, for instance, to an underestimation oénergy. Hence, the full envelopment boundary is given by

the degree of wrapping. the simultaneous solution ofE/9z=0 and the additional
The energy corresponding to the optimized membrangquation

shape is obtained by inserting the profile) back into the

functional (16). The necessary integration can be performed E(z)=E(2)=—2(W—4)+47. (25

analytically, yielding[25]

- al kK
Efree_x 1—k2

By eliminating the logarithmic term between those two equa-
Ko(ka/X) tions one obtains a quadratic equation foAfter inserting
. (20 its solution into Eq«(23), the final expression can be solved
K. (ka/\) — g
for o, and one arrives at the phase boundary

C. Exact asymptotic results Ww—4

| , | el PR A SR
The small gradient expansion becomes asymptotically ex- 4 2W - (2w)?
act in the limit of vanishing penetration,— 0. It is then also
permissible to replace the expressi@d) by its smallzex- Remembering the divergence & as W—4", Eq. (26)
pansion shows that in the limit of weak binding the phase boundary
approache®=4+ 27, as has been anticipated from the nu-
merical results in Sec. lll Csee also Fig. R Using the low-
est order approximatioV_;(x)~In|x| at x—0~ [51] and

. (26)

Efree= — 252 +0(2%), (21

9 lﬁ-z
y+n7
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expanding the square root in EQ6), one gets the approxi- V. SCALING LAWS IN THE HIGH TENSION LIMIT

mate asymptotic phase boundary As the tension grows, so does the equilibrium penetration

on the phase boundary toward the fully enveloped state. The
27) location of this transition can then no longer be obtained
within the small gradient framework of the preceding sec-
tion. Still, the numerical results in Sec. Il C point toward a
which is indicated by the left dotted curve in Fig. 6. The well defined and simple asymptotic behavior in the high ten-
expression(26) is significantly more accurate, but it requires sion limit (see, e.g., Fig. )6 Unfortunately, treating the cur-
the function)V_, to be evaluated. In any case, singé ;(x) vature as a small perturbation to the tension is tricky, because
is only real for —1/e<x<0, even the full expressiof6) this leads to a so-called “boundary layer problem”: The so-
exists only up toWw=4+8e 1727~4.928 or, equivalently, lution features a finite variation over a range which vanishes
o=e 1727/(2—/3)~0.433. At the upper boundary fatr  in the perturbative limi{52]. In the present case, the mem-
one findsz=2(2— \/§)~O.536. Larger penetrations than this brane has to bend away from the colloid toward the flat plane
cannot be described within the quadratic approximatiiy  [i.e., #/(s) has to change frorx to 0] in a region of vanish-
to the small gradient energi20). ing arclength. Typically, such problems are dealt with by a
Finally, the value of the penetratiaon the discontinuous Subtle matching procedur@n example is provided by the
phase boundary can be obtained by eliminafindgpetween treatment of an ideal neck in R¢#3]). Somewhat less am-
the two defining equationsE/az=0 and Eq.(25). Solving bitious, the curre.n.t section sh_ows how the asymptotic .behav—
the remaining equation fd# yields ior can be quantified by starting with reasonable scaling as-
sumptions about the boundary layer. Still, the resulting
2 4- 2 <1 2 1 formulas will turn out to be remarkab!y robust.
o= EeXp{ - m_zy] ~ EeXp{ - 2_2} (28) A useful observation to start with is that for largethe
equilibrium penetration approaches W/2o (see the discus-

) ) ) sion of the Young-Dupréimit k—0 in Sec. lll Q. Using the
The second approximate relation can also be solved in term§ntact curvature boundary conditiéh4), this would pre-

1oyt -
gl <Yt g

_ Ww-4
o= —F

2

of the Lamber/V’ function: dict the asymptotic relation
<1 1 51 1] & F1-1 S a1
= - - = 5 InZ—In |I’]Z . (29) al’bo_l \/T VZZO-' (30)
2W_4(—Tl4)

This suspicion is indeed confirmed by a check with the nu-

In the limit v— 0, i.e., when approaching the triple point, merical result(data not shown The proportionality toy&
=al/\ is not surprising, sincex is the typical length on

the penetration on the discontinuous phase boundary van-“ . .
ishes. Hence, the jump in order parameter approaches 2, i which the membrane bends. However, the proportionality to

the transition becomes increasingly discontinuous at smalley22=2 sina/2 is not obvioug53].

. However, Fig. 3 demonstrates that the barrier vanishes in Equation(30) can be used to infer the asymptotic behav-
the limit 3—0, so from this point of view the transition 1OF of several more variables, by virtue of the following scal-

becomes more continuous. The triple poifit(4:5=0) is N9 argument. Its aim is to estimate~ t_he energy of the_ free
thus quite unusual. Another peculiarity is that along thePart of the membrane, which for largeis largely stored in
phase boundarg does not approach 0 in an algebraic way; & Small toroidal rim at contadthis is the boundary laygr
rather,z(5") has an essential singularity &t=0, as is seen This tor0|d ha_ls the aX|aI_rad_|ussma and a typ.lcal mer|d_|-
from Eq. (28). All this happens because the small gradientnal radius which scales like fj. Up to geometric factors its
expression for the energy is not a conventional Landau exarea is thus proportional t@(sin a)/y, and the tension con-
pansion in powers of the order parametesince the qua- tribution becomes

dratic term has an additional logarithmic factor. This lies at

the heart of all logarithmic corrections encountered above on asina —
(manifest also in the occurrence of the functioy), and it El~o———~k\T2-2 (32)
renders the standard classification schemes for critical points tho

inapplicable here. o .

The exact asymptotic phase boundary can be obtained "€ two principal curvatures arealandy,, where the sec-
because information about the energy of the fully wrapped)”d one _clearly dommatgs in the high tension limit. Hence,
state is available. However, for tHzarrier the situation is the bending energy of this torus scales like
different: Even if the equilibrium penetration is very small,

the location of the barriefi.e., the penetratiorz,,e, at bend_ asina . N AN TN -
which the energy is larggsbccurs at large (see, e.g., the Eitee ~ # o (o) K\G2\2-2= kT2~ 2,
inset of Fig. 3. In fact, numerical evidence suggests that (32)

limz_,0Zparie= 1 from above. It is therefore impossible to
obtain the height of the barrier by extending the above smalvhere in the last step the prefactohas been dropped, since
gradient analysis. for high tension the equilibrium penetration at the transition
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FIG. 8. Scaling plot for the penetratiaon the phase boundary FIG. 9. Barrier height for the transition between partially
(solid) and the location of the barriez,, e (dashedl Accordingto  wrapped and fully enveloped as a function of reduced tergion
Egs. (34) and (36) the combination (2 z)5* should approach a a double logarithmic scale. The two dotted lines indicate the two
constant value, which should be the same for both cases if the lattefifferent regimes: For high tension the barrier height scales with an
is multiplied by the additional factor 2/(2+/3). The dotted line exponent 1/3, see E¢37), while an empirical power law fit to the

indicates the asymptotic limA?3~3.17. low tension regime gives the value 0.B54].

is close to 2. Equation&1) and (32) show that in the limit Information on the barrier can be obtained by further

of large tension and close to full wrapping the energy of thestudying the scaling energy. After inserting the phase bound-
free membrane can be written as ary (35) back into the energy one determines the location of

~ the maximum viadE(z)/9z=0:
Eree=2AVT\2-2 (o>12~2), (33
a1 2-\3 2/3=—1/3
where the proportionality factgk does not depend G or z, Zparier = 2~ —5 A0
and the additional factor 2 is included for later convenience.

It is worth pointing out that the dependence of the scal- The location of the barrier thus reaches the asymptotic value
ing form in Eq.(33) can also be understood in the following 2 in the same way as the location of the transition, only the
intuitive way: If one conceives of the strongly curved region prefactor is different by (2 /3)/2. Figure 8 also shows a
at detachment as giving rise tdiae energy Eq.c0ught to be  scaling plot of the location of the barrier, in which this addi-
proportional to the length of this line, which &/z(2—2z).  tional factor has been explicitly included. Since both curves
For z close to 2 this has the same characteristic variationn Fig. 8 approach the same limit, the present scaling argu-
V2—z as Eq.(33). However, it must be noted that this form ment predicts more than the exponent: it correctly predicts
holds only in the double limit of large tension and large theratio of the prefactorsas well.
penetration. GenerallyEs. is not well represented by a Finally, the barrier height is determined as the difference

(36)

simple line energy alonfs4]. - betweenE (Zyarie) andE(2), for which one finds

One can now insert the expressi88) into Eq. (4) and
discuss the phase behavior. Eliminatifigbetween the two £ >1 3 > 3 3) AYI13 3
equationsE(z) =E(2) anddE(z)/9z=0 gives the penetra- barrier = 7(2V3=3)ATG. (37

tion z at the envelopment transition as a function of reduced
tension: This is illustrated in Fig. 9. The two asymptotic power laws

meet at the crossover poidit,,s&4.72. The numerical value
=1 of3m —1/3 is intriguingly close to the critical tensiotr, mentioned at
z=2-A"0 " (34 the end of Sec. Il B, but this is probably coincidental.

That the above scaling argument gives the correct relation
'between the prefactors can also be checked in the following
way: Each of the equation&4)—(37) describes a scaling
relation for a different variable, but the prefactors all involve

G4 751 A. Numerically one can determin& by an asymptotic fit
wmE 4—3 A23G-13 (35)  to the high tension values of these four variables, deter-
T ’ mined from the nonlinear studies of Sec. Ill. In all cases one
finds thesameresult: A~5.650. The scatter among the four
showing that its asymptotic value is also reached algebraresults relative to the average value is very small, only about
ically with an exponent-1/3; see Fig. 6. 6x10 *, and stems most likely from the fitting procedure.

The high tension limit of the penetration is thus reached in a
algebraic way with an exponent1/3; see Fig. 8. Eliminat-
ing z instead ofWw gives the envelopment boundary:
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VI. DISCUSSION OF A BIOLOGICAL EXAMPLE ary W atWw=4 corresponds to a bindindree) energy per

ike of about 83T, which is physically reasonable.

The above estimates indicate that viral budding events can
expected to take place in the low tension regime of the

hase diagram, close to the two phase boundaries. This pat-

In the previous three sections a theoretical description of?
the adhesion and wrapping behavior between a colloid and g
. . . .. e
fluid membrane in terms of continuum elasticity theory has

been developed, using the full nonlinear shape equation ern is found time and again in biology: Systems often seem

their small gradient expansion, and scaling arguments. In thits . . :
. ) . . 0 have evolved to lie close to phase boundaries, because this
final section the results obtained are used to again make con-

tact with a biological application of such wrapping eventspermlts large "effects” to be triggered by comparatively

. . . . -small parameter changes. Recall, however, that the envelop-
mentioned in the Introduction, namely, the maturation of anjoma’ para eter changes b

. . ) . . ment transition has been found to be discontinuous and as-
mal viruses by budding. It is worth repeating that this event

. ; ) . 'sociated with a substantial energy barrier, which nature
unlike viral entry is generally not dependent on metabolic o nehaw has to overcome. A conceivable solution of this

energy[2]. It should thus be reasonably well approximatedpromem would be provided by a coupling between curvature
by the kind of passive wrapping scenario studied in this paznq compositional degrees of freed5—58 with the re-
per. sult of enhancing the concentration of lipid species in the

While the reduced tensiodr used throughout the paper highly curved rim which actually prefer a high curvature.
can span many orders of magnitude, it is important to realizehis would lower the rim energy and thereby the wrapping
that in abiological context the variation is more restricted. barrier. It is also compatible with the finding that the com-
Tensions of cellular membranes reported in the literaturgyosition of viral membranes frequently deviates from the av-
vary between 0.003 dyn/cm and 1 dyn/¢@6]. Larger val-  erage cellular lipid composition and resembles that of so-
ues soon result in a structural failure of the bilayer. On thecalled “raft” domains (for instance, by being rich in
other hand, typical bending constants of lipid bilayers are ircholesterol [6,59).
the range of a few tens up to about a hundkgd [33,47. It is crucial to realize that it is biologically feasible to
From these numbers one finds a characteristic membraratually movein the phase diagram of Fig. 2. For instance,
length N varying roughly between ten and at most a fewcells actively control and adjust their membrane tension for
hundred nanometers. Interestingly, this roughly coincideshe purpose of surface area regulatj@6]. Even more dra-
with the range of particle sizes for which the scenario treated@natic changes in tension can occur when one switches be-
in this paper is biologically meaningful—for quite different tween adhering membranes. If viral capsids get spontane-
reasons: Particles much smaller than 10 nm are more likelgusly wrapped, they evidently must be in a region of the
to be transported across a biomembrane by meanhari- phase diagram in which the wrapped state is stahte,
nels while wrapping of particles of a few hundred nanom- moreover, in which it is not rendered inaccessible by a large
eters or bigger can no longer be described without considebarriey. But the virus cannot stay wrapped forever. As it
ing the concomitant significant rearrangements of the actiinfects a new host cell, it typically becomes internalized via
cortex underlying the lipid bilayer. Moreover, on these largerreceptor mediated endocytosis and ends up in an endosome,
length scales theshear modulusof the actin network will  which it again has to leave in order to avoid ultimately being
also play a role, which the current theory forflaid mem-  digested by cellular toxins. Many viruses leave the endosome
brane does not take into account. Hence, if wrapping eventsy fusing their outer envelope with the endosomal bilayer,
of the kind discussed in this paper take place on cellulabut if the capsid were too strongly attached to the membrane,
membranes, they are bound to occur in the regime in whiclit could not be freed this way. The biochemical changes
the reduced tensiotr=(a/\)? is of order 1. within the endosome which lead to the fusion evéntpar-

A prominent class of colloidal particles exactly within the ticular, a lowering ofoH) are usually assumed to also dimin-
right range, for which such wrapping events occur and havésh the strength of adhesion. However, within the theoretical
been studied in great detail, are the nucleoprotein capsids éfamework established in this paper it is tempting to specu-
many animal viruses—belonging, for instance, to the famidate about an alternative mechanism: If the bilayer tension of
lies of Togaviridae, Coronaviridae, Retroviridae, Rhabdoviri-the endosome is larger than the tension of the membrane at
dae, Ortho- and Paramyxoviridae, and Hepadnaviri@de which the capsid became enveloped, unwrapping can be ef-
During their final maturation step the viral capsids are envelficiently promoted by vertically crossing the phase boundary
oped by a cellular membrarie.g., the plasma membrane or E from enveloped to partially wrapped, as can be seen in Fig.
the endoplasmic reticulunin an event which is believed to 2. Moreover, the horizontal adhesion axis of the phase dia-
be independent of active cell processes and by which thegram can not only be changed by chemically modifying the
ultimately leave their host. In the simplest case adhesion ispikes, but also by controlling theilensityin the membrane
due to a direct interaction between the capsid and the menfi60]. This may not only be relevant in the initial wrapping
brane(for instance, in the case of type-D retrovirug@$.  event, in which an increasing density of spikes in the mem-
However, more common is an adhesion mediated by virabrane can push the system over the envelopment boundary,
transmembrane protein@sually called spikgswhich can  but also in the unwrapping process, when after fusion the
attach at specific binding sites on the cagdgid-6], and for  spikes can readily diffuse into the essentially spike-free en-
which Semliki Forest virus(capsid radiusa~30 nm, 80 dosomal membrane and thus reduce the binding free energy.
spikes is the classical example. Assuming a typical mem- The above example illustrates how the physical principles
brane bending stiffness af~20kgT, the wrapping bound- discussed in this paper can be directly relevant in a biologi-
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cal context. Unfortunately it is often hard to disentangler from the axis, and a meridinal curvaturg[the azimuthal
them from other biological processes or secondary effects cfurvature is therc,= (sinyg)/rJ. A variation 8s of the ar-

the experimental setup. Hence, a quantitative test of thejength then entails the following changes in angle, distance,
present work appears more practicable in well controlled;,q height of the profile:

model systems, e.g., similar to the ones studied in Refs.
[12,13. Nevertheless, the physical results presented here can Sp=c8s, Or=cosyss, Sh=sinyds. (A1)
provide valuable insight into biological problems which may

complement other approaches. As an example one might The profile variation implies changes in the energy which
think of a way to measure cellular tension which is an alter-stem from the bound and the free part of the membrane. Let
native to the current method of pulling a tetj€23]. The  us vary the contact point a little bit such that a piece of area
above analysis has shown how the degree of wrapping of 8A=2#r6s gets additionally wrapped. This piece will
colloid depends on the applied tension—in the regime acceshange adhesion, bending, and tension energies, which are
sible by the small gradient expansion it is simply inverselyeasy to calculate since the substrate shape is known. For
proportional, see Eq23). One can thus use suitably coated contributions from the free membrane one needs to look at
colloids astension probesUnlike the tether approach this the boundary termig36,39,6] which occur upon variation of
method is in principle also applicable iotracellular mem-  the functional(5):

branes, even though a noninvasive determination of the de-

gree of wrapping will be very difficult for small beads. The ~

theory developed in this work should then be useful for ana- 5E|boundaw:
lyzing the results of such measurements.

aL JL aL
—0Y+ —¥r+——56h—HSEs
Y or dh

boundary
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APPENDIX: CONTACT CURVATURE Setting SE=0, inserting the Hamiltonian from Ed8) as

In Sec. Il B it was claimed that the boundary condition Well as the substrate constraints from E41), almost ev-
for the contact curvature, E¢L4), cannot be enforced if the €rything cancels, and one obtains the deceptively simple con-
point of detachment iixed but that it holds if additionally tact curvature conditionyy=cs— 2w/« [18], which for
the energy is stationary, i.edE/dz=0. This statement will spherical substrates becomes Etg). The sign in front of
be justified below by deriving the boundary condition from the square root depends on ones choice of the orientation. It
the stationarity equation. is straightforward to check that the condition remains valid if
The basic idea is that the equilibrium point of detachmenthe membrane additionally has a spontaneous curvature. A
is established as lacal force balanceor in other words, a generalization for thémuch hardercase in which no axial
variation of the contact point will raise the total complex symmetry is present has been given by Rosso and Yégh
energy. This variation must leave the contact point on theand more recently by Capovilla and Guv8].
substrate surface, and Réfl8] states that this yields the Looking for stationary points irE(z) is equivalent to
contact curvature in the form of a transversality conditionsetting the first variation of the contact point to zero, hence it
[39]. However, by virtue of locality, for a small variation it will reproduce the contact curvature condition. However,
suffices to account for the local substrate angle and curveathe route viaE(z) has various advantages. For instance, it
ture, which makes it possible to enforce the contact conean distinguish between minima and maxima, it does not
straint explicitly. Assume, therefore, that at the equilibriumoverlook boundary minima, and it yields information about
point of detachment the substrate has a slgpea distance barriers.
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