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Elastic deformation of a fluid membrane upon colloid binding

Markus Deserno*
Department of Chemistry and Biochemistry, UCLA, 405 Hilgard Ave., Los Angeles, California 90095-1569, USA

~Received 28 March 2003; published 12 March 2004!

When a colloidal particle adheres to a fluid membrane, it induces elastic deformations in the membrane
which oppose its own binding. The structural and energetic aspects of this balance are investigated within the
framework of a Helfrich Hamiltonian. Based on the full nonlinear shape equations for the membrane profile, a
line of continuous binding transitions and a second line of discontinuous envelopment transitions are found,
which meet at an unusual triple point. The regime of low tension is studied analytically using a small gradient
expansion, while in the limit of large tension scaling arguments are derived which quantify the asymptotic
behavior of phase boundary, degree of wrapping, and energy barrier. The maturation of animal viruses by
budding is discussed as a biological example of such colloid-membrane interaction events.
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I. INTRODUCTION

Arguably the most important structural component
all living cells is the phospholipid bilayer. It combines th
two diametrical tasks ofpartitioning—thereby organizing
the complex hierarchy of intracellular biochemic
environments—while at the same time providing control
transport mechanisms between neighboring compartme
@1#. The size of particles being transported spans severa
ders of magnitude, ranging all the way from subnanome
ions, whose passage through the bilayer is facilitated by p
tein channels, up to micron-sized objects engulfed by
large-scale membrane deformations occurring during pha
cytosis.

Since cell survival depends on a meticulous balance
these processes, they are actively controlled and req
metabolic energy to proceed. Still, there are cases where
happenpassivelyas a result of generic physical interaction
for instance, a sufficiently strong adhesion between the
ticle about to be transported and the membrane. An exam
that has been studied in extensive detail is the route a
which many animal virusesleave their host cell@2#. After
entering the cell~typically via receptor mediated endocytos
or other active processes@3#! and completion of the vira
replication steps, the new virions have to get out aga
Many virus families accomplish this by the plasma me
brane wrapping their nucleoprotein capsid and pinching
~‘‘budding’’ !—a step which not only sets them free but
which they also acquire their final coating. A particular
clean model case is provided by Semliki Forest virus,
which case the binding between capsid and membran
promoted by viral~‘‘spike’’ ! proteins@4–6#.

A different realization of such a wrapping event is pr
sumably exploited by an efficient gene transfection sys
proposed a few years ago by Boussifet al. @7#. There, DNA
is complexed by the cationic branched polymer polyethyl
imine into a globular complex, which then enters the cell~as
deduced from reporter gene expression!. Rather than particu-
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lar targeting signals, the slight net positive charge of
complex is believed to trigger adhesion and membrane p
etration via an electrostatic interaction with negative
charged regions of the plasma membrane.

Finally, a great deal of biophysical experimental tec
niques involve the attachment of microbeads to membra
For instance, one way to measure cellular tensions invo
pulling a thin tether with an optical tweezer which grabs
bead adhering to the membrane@8#. Cell membranes and
subcellular organelles are routinely probed with an atom
force microscope@9#. And a classical experiment on surfac
dynamics and locomotion of cells involves monitoring t
centripetal motion of a surface adherent particle@10#. In all
cases the object adhering to the cell will locally deform
plasma membrane, which can be crucial for interpreting
experimental results. For example, in the case of centrip
bead motion the adhering particles have been observe
actually becomeengulfedby the cell without involvement of
the endocytosis machinery, if only the membrane tensio
low enough@11#.

Wrapping and budding processes occur very frequentl
cells, but even though they are extensively studied exp
mentally, the high complexity of the real biological situatio
renders a clear extraction of underlying physical princip
very difficult; it is not even obvious or undisputed wheth
an explanation in terms of such principles is possible. A b
ter look at the physics is therefore provided by more ea
controllable experiments on the adsorption of colloids o
model lipid bilayers. The degree of wrapping of a colloid b
a giant phospholipid vesicle has, for instance, been stud
by Dietrich et al. @12#, who showed that it can be quantita
tively understood in terms of a balance between adhes
and elastic energy. Colloids will change the shape of
vesicle they adhere to, and this may give rise to attrac
interactions between them@13#. If the membrane tension is
low enough or the colloid sufficiently small, bending of th
membrane will become an important contribution which c
be strong enough to completely suppress adhesion@14–16#.
The bending stiffness will also prevent any ‘‘kink’’ in th
membrane profile at the line of contact; therefore, the not
of a contact angle only remains meaningful in an asympto
sense and needs to be replaced by the concept of co
©2004 The American Physical Society03-1
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curvature@17–20#. For vesicles adhering on flat surfaces th
can be measured by visualizing the contact zone via refl
tion interference contrast microscopy@21#, but for adhesion
of membranes on strongly curved substrates—in particu
small colloids—or if one needs resolution much below op
cal length scales, this option is not available. Here, comp
simulations can provide means for a closeup study@22#, but
to date it is still difficult to perform a quantitative analys
relating the observedgeometryto the underlying mesoscopi
elasticproperties.

Instead of directly measuring the local deformations, o
can study their indirect consequences and from there atte
to deduce some of their properties. This of course requ
theoretical modeling for bridging the gap. For instance,
eral membrane tensions can be inferred from the force
quired to pull a thin tether from the membrane@8#. Recent
theoretical work by Dere´nyi et al. shows that the force as
function of tether length is quite subtle and shows an ini
oscillatory structure before exponentially approaching
asymptotic value@23#. Very useful information might be ob
tained from this, for example, an independent estimate of
tether width. For less strongly bound beads Boulbitch h
related the unbinding force to the adhesion energy, m
brane bending stiffness, and the elasticity of an underly
elastic network~such as the cytoskeleton! by describing the
associated membrane deformation within a small grad
approximation@24#. And for the case of colloids adhering t
quasispherical vesicles a simple ansatz for the memb
shape has been shown to yield a structural phase diag
indicating when the colloid is free, partially wrapped, a
fully enveloped@16#.

This paper extends the work of Ref.@25# in developing a
detailed theory of the local wrapping behavior in the case
a constant prescribed lateral membrane tension. This ‘
semble’’ is particularly relevant for the biological situatio
since almost all cells constantly adjust the amount of lip
in their plasma membrane in order to maintain its late
tension at some specific set point@26#, but it would also
apply to a bilayer spread across a hole, provided it is
contact with a lipid reservoir. Tension can even arise fr
small-scale membrane undulations hiding some memb
area on the larger length scales one might currently be in
ested in~say, the colloid size! @27#. The situation to be dis-
cussed here is similar to the one treated by Boulbitch@24#,
but it will neither be restricted to small membrane deform
tions nor to a two-dimensional modeling of the geome
~which would be appropriate for long cylindrical colloids!.
After setting up the problem and identifying the releva
energies in Sec. II, the full nonlinear shape equations of
membrane profile are studied in Sec. III, leading to the str
tural wrapping phase diagram. Section IV then treats
small gradient expansion~i.e., thelinearizedtheory!, identi-
fies its range of validity as the regime of low membra
tension, and derives various asymptotically exact results.
the opposite regime of large tension several scaling pre
tions are deduced in Sec. V and validated against the num
cal results from Sec. III. In Sec. VI the results obtain
throughout the paper are discussed in the framework of
biological example of virus budding.
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II. GENERAL ENERGY CONSIDERATIONS

The aim of this paper is to describe the local deformatio
of a flat fluid membrane upon adsorption of a spherical c
loid, the geometry of which is depicted schematically in F
1. It will be assumed that this process can be understood
balance of the following three energy contributions:~i! Ad-
hesion is driven by acontact energyper unit areaw and
opposed by~ii ! the requirement tobend the membrane as
well as~iii ! the work of pulling excess membrane toward t
wrapping site against a prescribedlateral tensions. Since
the description will not aim at a microscopic understandin
continuum elasticity theory@17# is taken as a basis; in par
ticular, the bending energy per unit area will be describ
using the standard Helfrich expression@29#

ebend5
1
2 k~c11c22c0!21k̄c1c2 , ~1!

where c1 and c2 are the local principal curvatures of th
two-dimensional membrane surface@30#, c0 is the spontane-
ous curvature of the membrane, andk and k̄ are elastic
moduli ~with units of energy!. In the following a symmetric
membrane is assumed, i.e.,c050 ~consistent with the as
sumption of asymptotic flatness!; and since no topologica
changes will be considered, the second term in Eq.~1! can be
dropped@31#. The tension work is per definition given by th
lateral tensions times the excess area pulled toward t
wrapping site @32#. Note that from tension and bendin
modulus one can construct a lengthl—specific to the
membrane—according to

lªAk

s
. ~2!

Membrane deformations on a length scale smaller thal
predominantly cost bending energy, while deformations o

FIG. 1. Illustration of the wrapping geometry and membra
parametrization. An asymptotically flat membrane adheres parti
to a spherical colloid of radiusa with a degree of wrapping given
by z512cosa. Cylindrical symmetry around theeh axis is as-
sumed throughout the paper. The possibility of ‘‘overhangs’’
quires going beyond a Monge-like parametrization~which would
give the heighth as a function of radial distancer ). The choice
followed in this work is to specify the anglec with respect to the
horizontal as a function of arclengths @28#.
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larger scale pay mostly in tension. An interesting situat
occurs when the two intrinsic lengths of the problem—t
colloid radiusa and the membrane lengthl—are of the same
order, because then bending and tension contributions
comparable. In fact, for a typical cellular membrane tens
of s.0.02 dyn/cm@26# and a typical bilayer bending modu
lus of k.20kBT ~wherekBT is the thermal energy! one ob-
tains l.64 nm @33#. Viral capsids are about this big@2#,
therefore this biological situation sits squarely in the cro
over regime.

Assuming that the adhering membrane remains in
fluid state, its energy can be calculated easily once the de
of wrapping,z512cosa, is specified, because the shape
the membrane is known~see Fig. 1 for the definition of al
geometric variables!. The area of the colloid covered b
membrane is given byAad52pa2z, which gives an adhesion
energy of Ead52wAad522pa2zw. Using Eq. ~1!, the
bending energy is found to beEbend5

1
2 k(1/a11/a)2Aad

54pzk. Finally, the work done against a lateral tensions is
proportional throughs to theexcessarea pulled toward the
wrapping site, which isDAad5pa2z2, giving the tension
energyEten5pa2z2s.

It turns out to be advantageous to measure energie
units of the bending constantk and lengths in units of the
colloid radiusa. This suggests the definition of the followin
three dimensionless variables:

Ẽª
E

pk
, w̃ª

2wa2

k
, s̃ª

sa2

k
5S a

l D 2

, ~3!

where numerical factors ofp and 2 have been introduced fo
later convenience. Note that the crossover relationl.a cor-
responds tos̃.1. In terms of these reduced variables t
total energy of the colloid-membrane complex is given b

Ẽ52~w̃24!z1s̃z21Ẽfree~z,s̃ !, ~4!

where Ẽfree5Efree/pk is the ~dimensionless! energy of the
freepart of the membrane. This term is not so easy to ca
late, since the membrane shape is not knowna priori. Even
though the main purpose of this paper is to determineEfree
and understand its implications on the wrapping proces
still proves instructive to have a brief look at the proble
while ignoring Efree. Minimizing Eq. ~4! with respect toz
~and not forgetting possible boundary minima atz50 or z
52), the following picture emerges: Colloids do not adhe
if w̃,4, since they cannot pay the bending price. Oncew̃
.4, they start to adhere by first being partially wrapped. F
envelopment occurs only ifw̃.414s̃. In between, the de
gree of partial wrapping isz5(w̃24)/2s̃, and both transi-
tions from free to partially wrapped as well as from partia
wrapped to fully enveloped are continuous.

There is one case in which the simplificationEfree50
in fact holds rigorously, and that is the case of zero tens
s50 @14,15#. This can be seen as follows: Consider the tw
parameter family of cylindrically symmetric surface
r (h)/a5a1 cosh@(h/a2a2)/a1#, which are calledcatenoids.
The particular choicea15z(22z) and a25z211 1

2 z(2
2z) ln @z/(22z)# is readily seen to describe a surface whi
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smoothly touches the colloid with a degree of wrappi
equal toz. The important point is that such catenoids a
minimal surfaceswhich have zero mean curvature at eve
point @30#, and hence no bending energy. Since~i! for s50
the only possible energy of the free membrane comes f
bending and~ii ! the bending energy is positive definite, th
catenoid is in fact the minimum energy shape. The ab
simplified description of the problem is thus exact in the ca
s50, i.e., for w̃,4 the colloid is not wrapped and forw̃
.4 it is completely wrapped, with no energy barrier impe
ing the transition@34#.

III. THE FULL SOLUTION OF THE SHAPE PROFILE

By settingEfree50 one neglects, in particular, any pote
tial effect that the strongly curved part of the membra
close to the line of contact may have on the wrapping beh
ior. As a next step it is therefore tempting to approxima
Ẽfree by a phenomenological line energy@34#. However, nei-
ther the relation between the line tension constant and
membrane propertiesk and s would be known nor is the
implied dependency on the degree of wrapping—nam
;sina5Az(22z)—supported by more careful studies.~On
a scaling level and in the high tension limit this question
revisited in Sec. V.!

In order to draw sound conclusions, an explicit treatm
of the membrane deformation is needed. Three approa
are discussed in the following: In the present section
equilibrium membrane shape is determined by minimiz
its energy. Since this leads to complicated nonlinear diff
ential equations, one largely has to rely on numerical so
tions here. In the second approach, discussed in Sec. I
restriction to small membrane deformations renders th
differential equationslinear, and they can be solved exact
then. However, the latter approach per construction is limi
to fairly small degrees of wrapping. Hence, its range of v
lidity is not obvious and has to be checked against the n
linear results. Finally, in Sec. V a scaling analysis is used
shed light onto the high tension regime.

A. Energy functional and shape equations

The energy of the free membrane is the surface inte
over the local bending and tension contributions and is thu
functional of the shape. Using the cylindrically symmetr
angle—arclength parametrization from Fig. 1, the two pr
cipal curvatures are found to be (sinc)/r and ċ, where the
dot indicates a derivative with respect to the arclengths. The
energy functional can then be written as@35–37#

Ẽfree5E
0

`

ds L~c,ċ,r , ṙ ,ḣ,l r ,lh!, ~5!

where the Lagrange functionL is defined by

L5r H S ċ1
sinc

r D 2

1
2s̃

a2
~12cosc!J

1l r~ ṙ 2cosc!1lh~ ḣ2sinc!. ~6!
3-3
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The expression in curly brackets contains the bending
tension contributions, while the two additional terms enfo
the nonholonomic parametrization constraintsṙ 5cosc and
ḣ5sinc by means of the Lagrange parameterfunctions
l r(s) andlh(s). Measuring all lengths in units ofa, it can
be verified thatẼfree depends parametrically ons̃ ~and
through the boundary conditions onz) but on nothing else.
Therefore,w̃ ands̃ remain the relevant axes for a structur
phase diagram, and no new independent variable is in
duced by the free part of the membrane. For the same re
the membrane shape scales with the colloid sizea at givens̃
andz.

The LagrangianL is independent of the arclengths, there-
fore the corresponding Hamiltonian is conserved. Moreo
numerically one usually integrates systems of first-order
ferential equations. Both observations suggest to switch
Hamiltonian description. After defining the conjugate m
menta

pc5
]L

]ċ
52r S ċ1

sinc

r D , ~7a!

pr5
]L

] ṙ
5l r , ~7b!

and

ph5
]L

]ḣ
5lh , ~7c!

a Legendre transform yields

H5ċpc1 ṙ pr1ḣph2L

5
pc

2

4r
2

pc sinc

r
2

2s̃r

a2
~12cosc!1pr cosc1ph sinc.

~8!

The shape equations, which express the minimization of
functional ~5!, are the associated Hamilton equations:

ċ5
pc

2r
2

sinc

r
, ~9a!

ṙ 5cosc, ~9b!

ḣ5sinc, ~9c!

ṗc5S pc

r
2phD cosc1S 2s̃r

a2
1pr D sinc, ~9d!

ṗr5
pc

r S pc

4r
2

sinc

r D1
2s̃

a2
~12cosc!, ~9e!

and
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ṗh50. ~9f!

Shape equations of this kind have been studied extensive
the past, leading, among many other things, to a very
tailed understanding of vesicle conformations~in which case
one also needs to fix surface and volume by additio
Lagrange multipliers!. For a detailed review on this subjec
see Ref.@37#.

B. Boundary conditions

The situation to be studied is a colloid wrapped by
initially flat membrane. The boundary conditions thus ha
to ensure that the membrane touches the colloid smoo
and becomes asymptotically flat at large radial distances
contact,s50, the following must evidently hold~see again
Fig. 1!:

r ~0!5a sina, ~10a!

h~0!52a cosa, ~10b!

and

c~0!5a. ~10c!

The notion of asymptotic flatness can be enforced by req
ing the anglec(s) and all of its derivatives to vanish in th
limit s→` @38#. However, it suffices to demand this for th
anglec and the meridinal curvatureċ,

lim
s→`

c~s!50 ~11a!

and

lim
s→`

ċ~s!50, ~11b!

which ensures that tension and curvature energy density
ish if one moves away from the site where the membra
shape is perturbed by the adhering colloid. Ifc(s) vanishes
sufficiently rapidly ~as it does fors.0, see Sec. IV!, all
contributions beyond some large distanceS in arclength will
be negligible. A convenient way to exploit this is the follow
ing: Choose an upper arclengthS and impose the zero angl
condition there. Hence, variations ofS and c(S) are not
permitted during functional minimization, butr (S) andh(S)
are still free. This implies the additional boundary conditio
@36,39#

05
]L

] ṙ
U

s5S

5pr~S! ~12a!

and

05
]L

]ḣ
U

s5S

5ph~S!. ~12b!

The Hamilton equation~9f! showsph to be an integral of
‘‘motion,’’ and the boundary condition~12b! fixes its value
to zero. Hence,ph drops out of the problem everywhere. Th
3-4
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condition onpr can be made very useful by a little mo
thought. Since fors̃.0 the anglec converges to zero in an
essentially exponential way~see Sec. IV!, the expression for
the Hamiltonian will converge towardpr . Thus, the require-
ment of a flat profile impliesH5H(S)→pr(S)50, or in
other words, if the membrane is to become flat, the Ham
tonian must be zero. Using Eqs.~7a! and ~8!, this can be
turned into a condition forpr at thecontactboundary:

apr~0!5
Az~22z!

12z
$112s̃z2@aċ~0!#2%. ~13!

The only remaining variable for which the contact val
is not yet known ispc , or alternativelyċ. At this point a bit
of care is required. As is known, the balance between ad
sion energy and elastic membrane deformation results
boundary condition on the contact curvature@17#. For spheri-
cal surfaces this becomes@18#

aċ0ªaċ~0!512Aw̃. ~14!

However, it is crucial to understand that this condition on
holds for the finalequilibrium shape of the complex. In th
present case the situation is different, because the aim
calculate the energyEfree at anygivenvalue of the penetra
tion z. Therefore the adhesion balance isconstrained, and
Eq. ~14! generally will not hold. Nevertheless, by later im
posing ]E/]z50 for identifying the equilibrium degree o
penetration, Eq.~14! is recovered. This is clarified in th
Appendix.

Rather than Eq.~14!, it is the condition ofasymptotic

flatnessthat will determineċ0 . In practice, this can be don
via a shooting method: For a trial value ofċ0 integrate the
profile and find the arclengths0 at which the angle first van
ishes, i.e.,c(s0)50. Now adjustċ0 iteratively and search
for the value~s! at whichs0 diverges. One thereby finds th
contact curvature as a function of penetration,ċ0(z), in what
amounts to a nonlinear eigenvalue problem.

At this point a side note seems appropriate. It turns
that at s̃5s̃c54.721 139 . . . the nature of this eigenvalue
problem changes qualitatively, since a region ofz values
emerges~at zc51.862 89 . . . ) for which there existthree
contact curvatures which yield profiles satisfying all boun
ary conditions@the functionċ0(z) develops an S shape#. The
correct solution has to be identified based on the criterion
lowest energy. For somewhat larger values ofs̃ the lowest
energy solution cannot even be realized physically: The c
responding curvatureċ0 may become larger than 1/a, which
is geometrically impossible because the membrane ca
bend into the colloid it adheres to. This, however, is not
problem in the present case of an adhesion balance, sinc
curvature boundary condition from Eq.~14! anyway requires
the equilibrium contact curvature to besmaller than 1/a.
Therefore, the accessible range of multivalued contact cu
tures always turns out to lie in between the transition fr
partially to fully wrapped, and it has no direct consequen
on the phase diagram@40#. Still, the mathematical propertie
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of this bifurcation may permit some insight into the gene
nature of the solution, which, however, will not be pursued
the present paper.

C. Structural phase diagram

Numerically performing the calculations indicated abo
yields the shape profile and hence, via Eq.~5!, the free mem-
brane energy for any given value ofs̃ and z. From Eq.~4!
one then determines the total energy as a function ofs̃, w̃,
andz. The minimum inz within the range@0;2# corresponds
to the equilibrium state and one obtains the phase diagram
depicted in Fig. 2@25#.

The transition from free to partially wrapped~see dashed
line ‘‘W’’ ! remains unchanged compared to the case wh
Efree was neglected, because—just like the tension term—
energy of the free membrane is of higher than linear or
for small z ~this again follows analytically from a small gra
dient expansion, see Sec. IV!. The physics is thus determine
by a balance between bending and adhesion alone. How
the transition from partial wrapping to full envelopment~the
solid line ‘‘E’’ ! changes significantly: As can be seen in F
3, an energy barrier separates the fully and partially wrap
states, rendering the transitiondiscontinuous. This energy
barrier turns out to be mostly tension~not bending! energy
stored in the free membrane of partially wrapped colloi
and its height can be quite substantial. For instance, w
s50.02 dyn/cm~a typical value for a cellular tension@26#!,
a530 nm ~capsid radius of Semliki Forest virus, as an e
ample for a colloidal particle to be wrapped! and k

FIG. 2. Structural wrapping phase diagram in the plane of
duced adhesion constantw̃ and reduced lateral tensions̃, in the low
tension regimes̃,1 close to the triple point ‘‘T’’ (w̃54,s̃50).
The dashed line ‘‘W’’ marks the continuous transition at whi
partial wrapping sets in, the bold solid line ‘‘E’’ indicates the di
continuous transition between partially wrapped and fully env
oped, and the short dashed lines ‘‘S1’’ and ‘‘S2’’ are the spinodals
belonging to ‘‘E.’’ The fine dotted linew̃5412s̃ close to E indi-
cates where the fully wrapped state has zero energy.
3-5
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520kBT, one findss̃'0.22 and from thatEbarrier'22kBT.
This barrier is too large to be overcome by thermal fluct
tions alone@41#. However, upon increasing the adhesion e
ergy w̃ and thereby going deeper into the region of full e
velopment, the energy barrier separating the partially and
fully wrapped state decreases, ultimately vanishing at
spinodal line ‘‘S1’’ @42#. Conversely, once the colloid is fully
wrapped, the same energy barrier prevents the unwrap
transition, and one has to decrease the value ofw̃ further in
order to remove this barrier—see the second spinodal ‘‘2’’
in Fig. 2. Cycling across the envelopment transition E th
gives rise to hysteresis, as is illustrated for the particular c
s̃51 in Fig. 4, for which the energy barrier isEbarrier
'66kBT using the same system properties as above. In
estingly, this pronounced hysteresis entirely skips the p
tially wrapped region upon unbinding.

Both w̃ ands̃ are proportional toa2; therefore, a scan o
the particle radiusa at fixed values ofk, s, andw yields lines
in the phase diagram which pass through the origin. A car
study of the envelopment boundary E then reveals that
w/s&1.37 particles will not become fully enveloped, irr
spective of their size, while forw/s>2 all sufficiently large
particles are enveloped. In the small region in betwe
1.37&w/s<2, particles are only enveloped if they are ne
ther too small nor too large. The asymptotic envelopm
condition for smalla coincides with the boundary at whic
wrapping sets in, which isa5A2k/w or w/s52(l/a)2

@14,15#. At the onset of the possibility of full envelopmen
w/s.1.37, the first particles to be enveloped have a rad
a.4.4l. Figure 5 summarizes these results.

The energy of the free membrane,Efree, vanishes not only
in the limit z→0 but also in the full-wrapping limitz→2.
This is reminiscent of the case of an ideal neck connec
two vesicles@43# and relies on the membrane shape loca

FIG. 3. Height of the energy barrierẼbarrier5Ebarrier/pk as a
function of reduced tension in the low tension regimes̃,1, at the
value ofw̃ where the transition from partial wrapping to full enve

opment occurs. The inset illustrates the shape of the functionẼ(z)
and defines the concomitant energy barrier (s̃50.5 in this ex-
ample!.
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approaching a catenoid@44#. This fact is very convenien
because knowledge of the exact energy of the envelo
state greatly simplifies the discussion of the structural tr
sitions. This will be further exploited in Sec. IV. As an im
mediate consequence, it becomes possible to estimate
point of envelopment by comparing the known energy of
fully enveloped state not with the partially wrapped state
simply with the free state, namely,E50. This gives the
boundaryw̃5412s̃, which is also plotted in Fig. 2 and

FIG. 4. Hysteresis loop of crossing the envelopment transit
by changing the adhesion energyw̃ for the particular tensions̃
51. At w̃54 binding sets in, atw̃'6.1 the fully enveloped state
becomes stable. However, only atw̃'7.5 does the huge energ
barrier of 66kBT separating it from the partially wrapped state va
ish. On the unbinding branch the system again remains metas
beyond the actual transition, the stable partially wrapped branc
low bindings is entirely skipped and ‘‘replaced’’ by a metastab
partially wrapped branch beloww̃54, featuring large values ofz.
At w̃'2.7 the energy barrier for unbinding vanishes. The unsta
branch is indicated by the fine dashed back-bending curve and

responds to the maximum inẼ(z).

FIG. 5. Influence of the particle radiusa on the wrapping be-
havior. Sufficiently large particles will always at least partial
wrap. In the range 1.37&w/s<2 particles only become envelope
if they are neither too small nor too large.
3-6
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which actually becomes asymptotic to the real phase bou
ary in the limit s̃→0 ~in a complicated logarithmic fashion!.
Note that this line differs from the phase boundary of t
case whereEfree had been neglected by a factor 2 in the slo
~i.e., the prefactor ofs̃)—and in a maybe unexpected wa
The region in the phase diagram belonging to fully env
oped states grows at the expense of partially wrapped st
Even though bending and tension energy workagainstadhe-
sion, they can actuallypromoteenvelopment, because pa
tially wrapped states with a large penetration canlower their
energy by completing the wrapping, which provides anot
means to understand why the transition is discontinuous@45#.
The same has been found for colloids adhering to qu
spherical vesicles@16#.

For increasings̃ the bending energy should ultimate
become negligible compared to the tension. Indeed, in
limit k→0 the termEfree vanishes, because the membrane
flat immediately after detaching~smoothness of the slope
no longer required!. The equilibrium penetration of partially
wrapped colloids, as deduced from Eq.~4!, is then z
5w̃/2s̃. This equation can be rewritten asw5s@11cos(p
2a)# and is thereby recognized as theYoung-Dupre´ equation
@46#, which relates adhesion and tension to the contact an
herep2a. The envelopment boundary E consequently
curs at w̃54s̃, i.e., where the penetration isz52, or,
equivalently, where the contact angle vanishes and the m
brane completely ‘‘wets’’ the colloid.

On the basis of these results one expects a crossover
the small gradient asymptotic phase boundaryw̃5412s̃,
valid below s̃.1, to a large tension limitw̃54s̃.414s̃.
Figure 6 confirms this. However, it is quite remarkable h
many orders of magnitude of variation of the reduced tens
it takes to establish the transition toward the high tens
asymptotic: Ats̃51 the curve is about 0.142 away from th

FIG. 6. Phase boundary between partially and fully wrapp
state plotted against decades of reduced tensions̃. The combination
(w̃24)/s̃ is seen to crossover from the value 2 at smalls̃, which
follows from the small gradient expansion, to the Young-Dup´-
limit 4, which results when the energyEfree of the free membrane is
negligible. The two dotted curves at small and larges̃ correspond
to the small gradient estimate~27! and the scaling prediction~35!,
respectively.
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zero tension asymptotic; getting as close as that to the h
tension asymptotics requiress̃.23105. Over the interven-
ing five orders of magnitude of reduced tension, the infl
ence of bending and tension cannot be easily disentangle
Sec. V it will be shown that the Young-Dupre´ limit is reached
in a power law fashion with a small exponent 1/3, whi
partly explains this slow crossover.

It may be worth pointing out that the large range of valu
of s̃ is not experimentally unreasonable, because each o
three variables entering the reduced tension can vary b
few orders of magnitude: Membrane tensions between 0
dyn/cm and 1 dyn/cm are typical@26#, as are bending con
stants between 1kBT and 100kBT @47#. Assuming colloidal
radii between 20 nm and 2mm yields a range fors̃ from
about 1022 up to 106.

IV. SMALL GRADIENT EXPANSION

One particular result from the numerical solution of t
nonlinear problem is the following: For sufficiently sma
tension the equilibrium penetration shortly before envelo
ment ensues is quite small~see the inset in Fig. 3!, as is the
concomitant perturbation of the flat membrane. Therefo
this region of the phase diagram should be amenable to
approximate treatment of the differential equations wh
corresponds to a lowest order expansion around the flat
file.

A. Functional and linear shape equations

If the shape of the membrane is only weakly perturbed
Monge representation giving the profile heighth as a func-
tion of the positionr5(x,y) in the reference plane is appl
cable. Bending plus tension energy can then be written a

E5E d2rA11~“h!2H k

2 F“•

“h

A11~¹h!2G 2

1sJ ,

~15!

where“ is the two-dimensional nabla operator in the refe
ence plane. Expanding the two terms in the integrand up
lowest order in“h gives the small gradient expansion of th
energy functional

E5E d2r H k

2
~¹2h!21

s

2
~“h!2J . ~16!

The functional variationdE50 finally yields the linear
shape equation@48#:

¹2~¹22l22!h50, ~17!

wherel is the length introduced in Eq.~2!.

B. Equilibrium profile and energy

The differential equation~17! is solved by eigenfunctions
of the Laplacian corresponding to the eigenvalues 0
l22. In the present cylindrical symmetry the general so
tion can therefore be written as

d

3-7
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h~r !5h11h2 ln~r /l!1h3K0~r /l!1h4I 0~r /l!, ~18!

whereK0 and I 0 are modified Bessel functions@49#. Since
I 0(r ) diverges asr→`, the condition of a flat profile re-
quiresh450. And the coefficienth2 has to vanish, becaus
otherwise the energy density is not integrable forr→` ~and
s̃.0). The two remaining coefficients are obtained by fi
ing height and slope of the profile at the point where
touches the colloid. A straightforward calculation then giv
the small gradient profile

h~r !

a
5z211

l

a

k

12z

K0~ka/l!2K0~r /l!

K1~ka/l!
, ~19!

where the abbreviationk5sina5Az(22z) has been used
Figure 7 illustrates how the small gradient prediction of t
profile compares to the full solution. If the detachment an
a is sufficiently small, the overall membrane deformati
remains also small, and the profile from the linearized the
follows the full solution quite accurately. However, for
somewhat largera significant deviations appear: the mem
brane deformation is predicted to be substantially larger t
it actually is. It is worth pointing out that a good understan
ing of the profile is important if one attempts to infer phys
cal properties of the membrane or the complex by measu
the membrane deformation and working backwards. Us
the linearized prediction of the profile then would lead
incorrect conclusions, for instance, to an underestimation
the degree of wrapping.

The energy corresponding to the optimized membr
shape is obtained by inserting the profile~19! back into the
functional ~16!. The necessary integration can be perform
analytically, yielding@25#

Ẽfree5
a

l S k3

12k2D K0~ka/l!

K1~ka/l!
. ~20!

C. Exact asymptotic results

The small gradient expansion becomes asymptotically
act in the limit of vanishing penetration,z→0. It is then also
permissible to replace the expression~20! by its smallz ex-
pansion

Ẽfree522s̃z2S 2g1 ln
s̃z

2 D1O~z3!, ~21!

FIG. 7. Exact membrane profiles~solid curves! and small gra-
dient approximation~dashed curves! for two fixed detachment
anglesa530° anda560°. The reduced tension iss̃50.1.
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whereg50.5772 . . . is theEuler-Mascheroni constant@49#.
Up to a ~important! logarithmic correction this has the form
of a tensionenergy. In combination with Eq.~4! one obtains
the small gradient energy, up to quadratic order in the p
etrationz, and one can discuss the phase behavior.

As already mentioned in Sec. III C, the energy of the fr
membrane is of higher than linear order for smallz, hence
the transition from free to partially wrapped is dictated
the balance between bending and adhesion alone, giving
phase boundaryw̃54. The equilibrium penetration follows
from ]Ẽ/]z50, which can be rewritten as

WeW52
w̃24

8
e2g with Wª2g1 ln

s̃z

2
. ~22!

The solution of this transcendental equation is known as
LambertW function@50#, and in the present situation it is th
branch21 which is needed. One thus obtains

z5
2e22g

s̃
eW5

2e22g

s̃W
WeW52

w̃24

4s̃W
, ~23!

with

W5W~w̃!5W21S 2
w̃24

8
e2gD . ~24!

Equation~23! thus gives the penetration as a function ofw̃
ands̃. For x→02 the functionW21(x) diverges to2` in a
logarithmic way @51#, therefore the penetrationz(w̃) in-
creases atw̃54 for all values of the tension linearly up to
logarithmic correction. Note also the very simple depe
dence on tension, namely, just inversely proportional.

The expression~23! is of course not valid for allw̃.4,
because the system must also cross the transition toward
enveloped state. At this point one has to make use of a p
of information known from the nonlinear studies. The ener
of the free membrane was found to vanish asz approaches 2,
such that only the bound part contributes to the comp
energy. Hence, the full envelopment boundary is given
the simultaneous solution of]Ẽ/]z50 and the additional
equation

Ẽ~z!5Ẽ~2!522~w̃24!14s̃. ~25!

By eliminating the logarithmic term between those two equ
tions one obtains a quadratic equation forz. After inserting
its solution into Eq.~23!, the final expression can be solve
for s̃, and one arrives at the phase boundary

s̃5
w̃24

4 F11A11
1

2W
1

1

~2W!2G . ~26!

Remembering the divergence ofW as w̃→41, Eq. ~26!
shows that in the limit of weak binding the phase bound
approachesw̃5412s̃, as has been anticipated from the n
merical results in Sec. III C~see also Fig. 2!. Using the low-
est order approximationW21(x); lnuxu at x→02 @51# and
3-8
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expanding the square root in Eq.~26!, one gets the approxi
mate asymptotic phase boundary

s̃.
w̃24

2 F11
1

8 S 2g1 ln
w̃24

8 D 21G , ~27!

which is indicated by the left dotted curve in Fig. 6. Th
expression~26! is significantly more accurate, but it require
the functionW21 to be evaluated. In any case, sinceW21(x)
is only real for 21/e<x,0, even the full expression~26!
exists only up tow̃5418e2122g'4.928 or, equivalently,
s̃5e2122g/(22A3)'0.433. At the upper boundary fors̃
one findsz52(22A3)'0.536. Larger penetrations than th
cannot be described within the quadratic approximation~21!
to the small gradient energy~20!.

Finally, the value of the penetrationz on the discontinuous
phase boundary can be obtained by eliminatingw̃ between
the two defining equations]Ẽ/]z50 and Eq.~25!. Solving
the remaining equation fors̃ yields

s̃5
2
z expH 2

42z2

2z~42z! 22gJ .
z!1 2

z expH2
1
2zJ . ~28!

The second approximate relation can also be solved in te
of the LambertW function:

z .
s̃!1

2
1

2 W21~2s̃/4!
'
[51]

2
1
2 F lns̃

4 2 lnUlns̃
4UG21

. ~29!

In the limit s̃→0, i.e., when approaching the triple poin
the penetration on the discontinuous phase boundary
ishes. Hence, the jump in order parameter approaches 2
the transition becomes increasingly discontinuous at sma
s̃. However, Fig. 3 demonstrates that the barrier vanishe
the limit s̃→0, so from this point of view the transition
becomes more continuous. The triple point (w̃54;s̃50) is
thus quite unusual. Another peculiarity is that along t
phase boundaryz does not approach 0 in an algebraic wa
rather,z(s̃) has an essential singularity ats̃50, as is seen
from Eq. ~28!. All this happens because the small gradie
expression for the energy is not a conventional Landau
pansion in powers of the order parameterz since the qua-
dratic term has an additional logarithmic factor. This lies
the heart of all logarithmic corrections encountered ab
~manifest also in the occurrence of the functionW!, and it
renders the standard classification schemes for critical po
inapplicable here.

The exact asymptotic phase boundary can be obtai
because information about the energy of the fully wrapp
state is available. However, for thebarrier the situation is
different: Even if the equilibrium penetration is very sma
the location of the barrier~i.e., the penetrationzbarrier at
which the energy is largest! occurs at largez ~see, e.g., the
inset of Fig. 3!. In fact, numerical evidence suggests th
lims̃→0zbarrier51 from above. It is therefore impossible t
obtain the height of the barrier by extending the above sm
gradient analysis.
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V. SCALING LAWS IN THE HIGH TENSION LIMIT

As the tension grows, so does the equilibrium penetrat
on the phase boundary toward the fully enveloped state.
location of this transition can then no longer be obtain
within the small gradient framework of the preceding se
tion. Still, the numerical results in Sec. III C point toward
well defined and simple asymptotic behavior in the high te
sion limit ~see, e.g., Fig. 6!. Unfortunately, treating the cur
vature as a small perturbation to the tension is tricky, beca
this leads to a so-called ‘‘boundary layer problem’’: The s
lution features a finite variation over a range which vanish
in the perturbative limit@52#. In the present case, the mem
brane has to bend away from the colloid toward the flat pla
@i.e., c(s) has to change froma to 0# in a region of vanish-
ing arclength. Typically, such problems are dealt with by
subtle matching procedure~an example is provided by th
treatment of an ideal neck in Ref.@43#!. Somewhat less am
bitious, the current section shows how the asymptotic beh
ior can be quantified by starting with reasonable scaling
sumptions about the boundary layer. Still, the result
formulas will turn out to be remarkably robust.

A useful observation to start with is that for larges̃ the
equilibrium penetration approachesz5w̃/2s̃ ~see the discus-
sion of the Young-Dupre´ limit k→0 in Sec. III C!. Using the
contact curvature boundary condition~14!, this would pre-
dict the asymptotic relation

aċ0512A w̃ ;
s̃@1

2A2zs̃. ~30!

This suspicion is indeed confirmed by a check with the n
merical results~data not shown!. The proportionality toAs̃
5a/l is not surprising, sincel is the typical length on
which the membrane bends. However, the proportionality
A2z52 sina/2 is not obvious@53#.

Equation~30! can be used to infer the asymptotic beha
ior of several more variables, by virtue of the following sca
ing argument. Its aim is to estimate the energy of the f
part of the membrane, which for larges̃ is largely stored in
a small toroidal rim at contact~this is the boundary layer!.
This toroid has the axial radiusa sina and a typical meridi-
nal radius which scales like 1/ċ0 . Up to geometric factors its
area is thus proportional to (a sina)/ċ0, and the tension con
tribution becomes

Efree
ten;s

a sina

ċ0

;kAs̃A22z. ~31!

The two principal curvatures are 1/a andċ0 , where the sec-
ond one clearly dominates in the high tension limit. Hen
the bending energy of this torus scales like

Efree
bend;k

a sina

ċ0

~ ċ0!2;kAs̃zA22z;kAs̃A22z,

~32!

where in the last step the prefactorz has been dropped, sinc
for high tension the equilibrium penetration at the transiti
3-9
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MARKUS DESERNO PHYSICAL REVIEW E69, 031903 ~2004!
is close to 2. Equations~31! and ~32! show that in the limit
of large tension and close to full wrapping the energy of
free membrane can be written as

Ẽfree.2AAs̃A22z ~ s̃@1,z'2!, ~33!

where the proportionality factorA does not depend ons̃ or z,
and the additional factor 2 is included for later convenien

It is worth pointing out that thez dependence of the sca
ing form in Eq.~33! can also be understood in the followin
intuitive way: If one conceives of the strongly curved regi
at detachment as giving rise to aline energy, Efree ought to be
proportional to the length of this line, which isaAz(22z).
For z close to 2 this has the same characteristic varia
A22z as Eq.~33!. However, it must be noted that this form
holds only in the double limit of large tension and lar
penetration. Generally,Efree is not well represented by
simple line energy alone@34#.

One can now insert the expression~33! into Eq. ~4! and
discuss the phase behavior. Eliminatingw̃ between the two
equationsẼ(z)5Ẽ(2) and]Ẽ(z)/]z50 gives the penetra
tion z at the envelopment transition as a function of reduc
tension:

z .
s̃@1

22A2/3s̃21/3. ~34!

The high tension limit of the penetration is thus reached in
algebraic way with an exponent21/3; see Fig. 8. Eliminat-
ing z instead ofw̃ gives the envelopment boundary:

w̃24

s̃
.

s̃@1

423 A2/3s̃21/3, ~35!

showing that its asymptotic value is also reached alge
ically with an exponent21/3; see Fig. 6.

FIG. 8. Scaling plot for the penetrationz on the phase boundar
~solid! and the location of the barrier,zbarrier ~dashed!. According to
Eqs. ~34! and ~36! the combination (22z)s̃1/3 should approach a
constant value, which should be the same for both cases if the l
is multiplied by the additional factor 2/(22A3). The dotted line
indicates the asymptotic limitA2/3'3.17.
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Information on the barrier can be obtained by furth
studying the scaling energy. After inserting the phase bou
ary ~35! back into the energy one determines the location
the maximum via]Ẽ(z)/]z50:

zbarrier .
s̃@1

22
22A3

2 A2/3s̃21/3. ~36!

The location of the barrier thus reaches the asymptotic va
2 in the same way as the location of the transition, only
prefactor is different by (22A3)/2. Figure 8 also shows a
scaling plot of the location of the barrier, in which this add
tional factor has been explicitly included. Since both curv
in Fig. 8 approach the same limit, the present scaling ar
ment predicts more than the exponent: it correctly pred
the ratio of the prefactorsas well.

Finally, the barrier height is determined as the differen
betweenẼ(zbarrier) and Ẽ(2), for which one finds

Ẽbarrier .
s̃@1 3

4 ~2A323!A4/3s̃1/3. ~37!

This is illustrated in Fig. 9. The two asymptotic power law
meet at the crossover points̃cross'4.72. The numerical value
is intriguingly close to the critical tensions̃c mentioned at
the end of Sec. III B, but this is probably coincidental.

That the above scaling argument gives the correct rela
between the prefactors can also be checked in the follow
way: Each of the equations~34!–~37! describes a scaling
relation for a different variable, but the prefactors all invol
A. Numerically one can determineA by an asymptotic fit
to the high tension values of these four variables, de
mined from the nonlinear studies of Sec. III. In all cases o
finds thesameresult:A'5.650. The scatter among the fou
results relative to the average value is very small, only ab
631024, and stems most likely from the fitting procedure

ter

FIG. 9. Barrier height for the transition between partia
wrapped and fully enveloped as a function of reduced tensions̃ on
a double logarithmic scale. The two dotted lines indicate the t
different regimes: For high tension the barrier height scales with
exponent 1/3, see Eq.~37!, while an empirical power law fit to the
low tension regime gives the value 0.86@54#.
3-10
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VI. DISCUSSION OF A BIOLOGICAL EXAMPLE

In the previous three sections a theoretical description
the adhesion and wrapping behavior between a colloid a
fluid membrane in terms of continuum elasticity theory h
been developed, using the full nonlinear shape equati
their small gradient expansion, and scaling arguments. In
final section the results obtained are used to again make
tact with a biological application of such wrapping even
mentioned in the Introduction, namely, the maturation of a
mal viruses by budding. It is worth repeating that this eve
unlike viral entry, is generally not dependent on metabo
energy@2#. It should thus be reasonably well approximat
by the kind of passive wrapping scenario studied in this
per.

While the reduced tensions̃ used throughout the pape
can span many orders of magnitude, it is important to rea
that in abiological context the variation is more restricte
Tensions of cellular membranes reported in the literat
vary between 0.003 dyn/cm and 1 dyn/cm@26#. Larger val-
ues soon result in a structural failure of the bilayer. On
other hand, typical bending constants of lipid bilayers are
the range of a few tens up to about a hundredkBT @33,47#.
From these numbers one finds a characteristic memb
length l varying roughly between ten and at most a fe
hundred nanometers. Interestingly, this roughly coinci
with the range of particle sizes for which the scenario trea
in this paper is biologically meaningful—for quite differen
reasons: Particles much smaller than 10 nm are more li
to be transported across a biomembrane by means ofchan-
nels, while wrapping of particles of a few hundred nanom
eters or bigger can no longer be described without consi
ing the concomitant significant rearrangements of the a
cortex underlying the lipid bilayer. Moreover, on these larg
length scales theshear modulusof the actin network will
also play a role, which the current theory for afluid mem-
brane does not take into account. Hence, if wrapping ev
of the kind discussed in this paper take place on cellu
membranes, they are bound to occur in the regime in wh
the reduced tensions̃5(a/l)2 is of order 1.

A prominent class of colloidal particles exactly within th
right range, for which such wrapping events occur and h
been studied in great detail, are the nucleoprotein capsid
many animal viruses—belonging, for instance, to the fa
lies of Togaviridae, Coronaviridae, Retroviridae, Rhabdov
dae, Ortho- and Paramyxoviridae, and Hepadnaviridae@2#.
During their final maturation step the viral capsids are env
oped by a cellular membrane~e.g., the plasma membrane
the endoplasmic reticulum! in an event which is believed to
be independent of active cell processes and by which t
ultimately leave their host. In the simplest case adhesio
due to a direct interaction between the capsid and the m
brane~for instance, in the case of type-D retroviruses@2#!.
However, more common is an adhesion mediated by v
transmembrane proteins~usually called spikes! which can
attach at specific binding sites on the capsid@4–6#, and for
which Semliki Forest virus~capsid radiusa'30 nm, 80
spikes! is the classical example. Assuming a typical me
brane bending stiffness ofk'20kBT, the wrapping bound-
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ary W at w̃54 corresponds to a binding~free! energy per
spike of about 6kBT, which is physically reasonable.

The above estimates indicate that viral budding events
be expected to take place in the low tension regime of
phase diagram, close to the two phase boundaries. This
tern is found time and again in biology: Systems often se
to have evolved to lie close to phase boundaries, because
permits large ‘‘effects’’ to be triggered by comparative
small parameter changes. Recall, however, that the enve
ment transition has been found to be discontinuous and
sociated with a substantial energy barrier, which nat
somehow has to overcome. A conceivable solution of t
problem would be provided by a coupling between curvat
and compositional degrees of freedom@55–58# with the re-
sult of enhancing the concentration of lipid species in
highly curved rim which actually prefer a high curvatur
This would lower the rim energy and thereby the wrappi
barrier. It is also compatible with the finding that the com
position of viral membranes frequently deviates from the
erage cellular lipid composition and resembles that of
called ‘‘raft’’ domains ~for instance, by being rich in
cholesterol! @6,59#.

It is crucial to realize that it is biologically feasible t
actually movein the phase diagram of Fig. 2. For instanc
cells actively control and adjust their membrane tension
the purpose of surface area regulation@26#. Even more dra-
matic changes in tension can occur when one switches
tween adhering membranes. If viral capsids get sponta
ously wrapped, they evidently must be in a region of t
phase diagram in which the wrapped state is stable~and,
moreover, in which it is not rendered inaccessible by a la
barrier!. But the virus cannot stay wrapped forever. As
infects a new host cell, it typically becomes internalized v
receptor mediated endocytosis and ends up in an endos
which it again has to leave in order to avoid ultimately bei
digested by cellular toxins. Many viruses leave the endoso
by fusing their outer envelope with the endosomal bilay
but if the capsid were too strongly attached to the membra
it could not be freed this way. The biochemical chang
within the endosome which lead to the fusion event~in par-
ticular, a lowering ofpH) are usually assumed to also dimin
ish the strength of adhesion. However, within the theoret
framework established in this paper it is tempting to spe
late about an alternative mechanism: If the bilayer tension
the endosome is larger than the tension of the membran
which the capsid became enveloped, unwrapping can be
ficiently promoted by vertically crossing the phase bound
E from enveloped to partially wrapped, as can be seen in
2. Moreover, the horizontal adhesion axis of the phase
gram can not only be changed by chemically modifying t
spikes, but also by controlling theirdensityin the membrane
@60#. This may not only be relevant in the initial wrappin
event, in which an increasing density of spikes in the me
brane can push the system over the envelopment bound
but also in the unwrapping process, when after fusion
spikes can readily diffuse into the essentially spike-free
dosomal membrane and thus reduce the binding free ene

The above example illustrates how the physical princip
discussed in this paper can be directly relevant in a biolo
3-11
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cal context. Unfortunately it is often hard to disentang
them from other biological processes or secondary effect
the experimental setup. Hence, a quantitative test of
present work appears more practicable in well control
model systems, e.g., similar to the ones studied in R
@12,13#. Nevertheless, the physical results presented here
provide valuable insight into biological problems which m
complement other approaches. As an example one m
think of a way to measure cellular tension which is an alt
native to the current method of pulling a tether@8,23#. The
above analysis has shown how the degree of wrapping
colloid depends on the applied tension—in the regime ac
sible by the small gradient expansion it is simply invers
proportional, see Eq.~23!. One can thus use suitably coate
colloids astension probes. Unlike the tether approach thi
method is in principle also applicable tointracellular mem-
branes, even though a noninvasive determination of the
gree of wrapping will be very difficult for small beads. Th
theory developed in this work should then be useful for a
lyzing the results of such measurements.
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APPENDIX: CONTACT CURVATURE

In Sec. III B it was claimed that the boundary conditio
for the contact curvature, Eq.~14!, cannot be enforced if the
point of detachment isfixed, but that it holds if additionally
the energy is stationary, i.e.,]E/]z50. This statement will
be justified below by deriving the boundary condition fro
the stationarity equation.

The basic idea is that the equilibrium point of detachm
is established as alocal force balance; or in other words, a
variation of the contact point will raise the total comple
energy. This variation must leave the contact point on
substrate surface, and Ref.@18# states that this yields th
contact curvature in the form of a transversality conditi
@39#. However, by virtue of locality, for a small variation
suffices to account for the local substrate angle and cu
ture, which makes it possible to enforce the contact c
straint explicitly. Assume, therefore, that at the equilibriu
point of detachment the substrate has a slopecs, a distance
i-

l.
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r s from the axis, and a meridinal curvaturecs @the azimuthal
curvature is thenca5(sincs)/r s]. A variation ds of the ar-
clength then entails the following changes in angle, distan
and height of the profile:

dc5csds, dr 5coscsds, dh5sincsds. ~A1!

The profile variation implies changes in the energy wh
stem from the bound and the free part of the membrane.
us vary the contact point a little bit such that a piece of a
dA52pr sds gets additionally wrapped. This piece wi
change adhesion, bending, and tension energies, which
easy to calculate since the substrate shape is known.
contributions from the free membrane one needs to look
the boundary terms@36,39,61# which occur upon variation of
the functional~5!:

dẼuboundary5F ]L

]ċ
dc1

]L

] ṙ
dr 1

]L

]ḣ
dh2HdsG

boundary

.

~A2!

Since a piece of free membrane isremovedduring this varia-
tion, the boundary term~A2! evaluated ats50 contributes
with a minus sign. The total change in energy is theref
given by

dE5S 2w1
1

2
k~cs1ca!

21s~12coscs! D dA

2pk@2r s~ ċ01ca!dc1prdr 1phdh2Hds#. ~A3!

Setting dE50, inserting the Hamiltonian from Eq.~8! as
well as the substrate constraints from Eq.~A1!, almost ev-
erything cancels, and one obtains the deceptively simple c
tact curvature conditionċ05cs2A2w/k @18#, which for
spherical substrates becomes Eq.~14!. The sign in front of
the square root depends on ones choice of the orientatio
is straightforward to check that the condition remains valid
the membrane additionally has a spontaneous curvatur
generalization for the~much harder! case in which no axial
symmetry is present has been given by Rosso and Virga@62#
and more recently by Capovilla and Guven@63#.

Looking for stationary points inE(z) is equivalent to
setting the first variation of the contact point to zero, henc
will reproduce the contact curvature condition. Howev
the route viaE(z) has various advantages. For instance
can distinguish between minima and maxima, it does
overlook boundary minima, and it yields information abo
barriers.
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right-hand side,’’ thus the enveloped state becomes incre
ingly favorable.

@43# B. Fourcade, L. Miao, M. Rao, M. Wortis, and R.K.P. Zi
Phys. Rev. E49, 5276~1994!.

@44# As the neck contracts, the membrane deformation will u
mately occur on length scales small compared to the typ
sizel introduced in Eq.~2!, hence tension ceases to be impo
tant. But if only bending counts, the optimal solution is th
catenoid, which has zero bending energy. Indeed, in the li

z→2 the meridinal contact curvatureċ0 converges toward
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